【題目】關于空間直角坐標系中的一點,有下列說法:
①點到坐標原點的距離為;
②的中點坐標為;
③點關于軸對稱的點的坐標為;
④點關于坐標原點對稱的點的坐標為;
⑤點關于坐標平面對稱的點的坐標為.
其中正確的個數是
A. B. C. D.
科目:高中數學 來源: 題型:
【題目】已知拋物線:的焦點為,平行于軸的兩條直線,分別交于,兩點,交的準線于,兩點.
(1)若在線段上,是的中點,證明:;
(2)若△的面積是△的面積的兩倍,求中點的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,分別為橢圓:()的左、右兩個焦點.
(1)若橢圓上的點到,兩點的距離之和等于,求橢圓的方程和焦點坐標;
(2)設點是(1)中所得橢圓上的動點,,求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知函數()的最小正周
期為,
(Ⅰ)求的值;
(Ⅱ)將函數的圖像上各點的橫坐標縮短到原來的,縱坐標不變,得到函數
的圖像,求函數在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓經過點,圓的圓心在圓的內部,且直線被圓所截得的弦長為.點為圓上異于的任意一點,直線與軸交于點,直線與軸交于點.
(1)求圓的方程;
(2)求證: 為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在軸上,離心率,且橢圓經過點,過橢圓的左焦點且不與坐標軸垂直的直線交橢圓于,兩點.
(1)求橢圓的方程;
(2)設線段的垂直平分線與軸交于點,求△的面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且.
(1)求拋物線的方程;
(2)過點作直線交拋物線于兩點,求證:.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com