18.實(shí)數(shù)m分別取什么數(shù)值時(shí),復(fù)數(shù)z=(m2+5m+6)+(m2-2m-15)i:
(1)是純虛數(shù);
(2)對(duì)應(yīng)的點(diǎn)在實(shí)軸上方.

分析 (1)由復(fù)數(shù)z=(m2+5m+6)+(m2-2m-15)i是純虛數(shù),得實(shí)部等于0且虛部不等于0,求解即可得答案;
(2)根據(jù)復(fù)數(shù)z對(duì)應(yīng)點(diǎn)在實(shí)軸上方可得m2-2m-15>0,求解即可得答案.

解答 解:(1)∵復(fù)數(shù)z=(m2+5m+6)+(m2-2m-15)i是純虛數(shù),
∴$\left\{\begin{array}{l}{{m}^{2}+5m+6=0}\\{{m}^{2}-2m-15≠0}\end{array}\right.$,解得m=-2.
∴m=-2時(shí),復(fù)數(shù)z是純虛數(shù);
(2)由z的對(duì)應(yīng)點(diǎn)在實(shí)軸上方,
得m2-2m-15>0,解得m<-3或m>5.
∴m<-3或m>5時(shí),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在實(shí)軸上方.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知10件產(chǎn)品中有3件次品,若任意抽取3件進(jìn)行檢驗(yàn),則其中至少有一件次品的概率是$\frac{17}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時(shí),f(x)=|x|,則函數(shù)y=f(x)的圖象與函數(shù)y=log4|x|的交點(diǎn)個(gè)數(shù)為( 。
A.2B.3C.6D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x|x-a|+2x(a∈R)
(1)當(dāng)a=4時(shí),解不等式f(x)≥8;
(2)當(dāng)a∈[0,4]時(shí),求f(x)在區(qū)間[3,4]上的最小值;
(3)若存在a∈[0,4],使得關(guān)于x的方程f(x)=tf(a)有3個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A、B的點(diǎn),直線度PC⊥平面ABC,E、F分別是PA、PC的中點(diǎn).
(Ⅰ)設(shè)平面BEF與平面ABC的交線為l,求直線l與平面PBC所成角的余弦值;
(Ⅱ)設(shè)(Ⅰ)中的直線l與圓O的另一個(gè)交點(diǎn)為點(diǎn)D,且滿足$\overrightarrow{DQ}=λ\overrightarrow{CP}$,$∠ABC=∠CBP=\frac{π}{3}$,當(dāng)二面角Q-BC-P的余弦值為$\frac{{\sqrt{3}}}{3}$時(shí),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知全集U={1,2,3,4},A={1,2,x2}與B={1,4}
(1)求∁UB
(2)若A∩B=B,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)x,y,z∈R+,$a=x+\frac{1}{y},b=y+\frac{1}{z},c=z+\frac{1}{x}$,則a,b,c三數(shù)( 。
A.都小于2B.都大于2
C.至少有一個(gè)不大于2D.至少有一個(gè)不小于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某大學(xué)在開(kāi)學(xué)季準(zhǔn)備銷售一種盒飯進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出1盒該盒飯獲利潤(rùn)10元,未售出的產(chǎn)品,每盒虧損5元.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開(kāi)學(xué)季購(gòu)進(jìn)了150盒該產(chǎn)品,以x(單位:盒,100≤x≤200)表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量,y(單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).
(Ⅰ)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量x的平均數(shù)和眾數(shù);
(Ⅱ)將y表示為x的函數(shù);
(Ⅲ)根據(jù)頻率分布直方圖估計(jì)利潤(rùn)y不少于1350元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.方向向量為$\overrightarrow d=(1,2)$,且過(guò)點(diǎn)A(3,4)的直線的一般式方程為2x-y-2=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案