某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛,假設(shè)該小艇沿直線方向以v海里/小時(shí)的航行速度勻速行駛,經(jīng)過t小時(shí)與輪船相遇.
(1)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(2)假設(shè)小艇的最高航行速度只能達(dá)到30海里/小時(shí),試設(shè)計(jì)航行方案(即確定航行方向和航行速度的大小),使得小艇能以最短時(shí)間與輪船相遇,并說明理由.
(1)當(dāng)t=時(shí),Smin=10,此時(shí)v==30
(2)航行方向?yàn)楸逼珫|30°,航行速度為30海里/小時(shí),小艇能以最短時(shí)間與輪船相遇.
【解析】【解析】
(1)設(shè)相遇時(shí)小艇航行的距離為S海里,則
S=
=
=.
故當(dāng)t=時(shí),Smin=10,此時(shí)v==30.
答:小艇以30海里/小時(shí)的速度航行,相遇時(shí)小艇的航行距離最。
(2)設(shè)小艇與輪船在B處相遇,如圖,則v2t2=400+900t2-2·20·30t·cos(90°-30°),
故v2=900-+.
∵0<v≤30,∴900-+≤900,即-≤0,
解得t≥.
又t=時(shí),v=30.
故v=30時(shí),t取最小值,且最小值等于.
此時(shí),在△OAB中,有OA=OB=AB=20,故可設(shè)計(jì)航行方案如下:
航行方向?yàn)楸逼珫|30°,航行速度為30海里/小時(shí),小艇能以最短時(shí)間與輪船相遇.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-1數(shù)列的概念與簡單表示法(解析版) 題型:解答題
已知數(shù)列{an}滿足:a1=1,2n-1an=an-1(n∈N*,n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)這個(gè)數(shù)列從第幾項(xiàng)開始及以后各項(xiàng)均小于?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-2平面向量的基本定理及坐標(biāo)表示(解析版) 題型:填空題
若等邊三角形ABC的邊長為2,平面內(nèi)一點(diǎn)M滿足=+,則·=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-1向量的概念及運(yùn)算(解析版) 題型:選擇題
BC是單位圓A的一條直徑,F(xiàn)是線段AB上的點(diǎn),且=2,若DE是圓A中繞圓心A運(yùn)動的一條直徑,則·的值是( )
A.- B.- C.- D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-1向量的概念及運(yùn)算(解析版) 題型:選擇題
在梯形ABCD中,AB∥CD,AB=2CD,M、N分別為CD、BC的中點(diǎn),若=λ+μ,則λ+μ=( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-8解三角形應(yīng)用舉例(解析版) 題型:解答題
如圖,A,B是海面上位于東西方向相距5(3+)海里的兩個(gè)觀測點(diǎn),現(xiàn)位于A點(diǎn)北偏東45°,B點(diǎn)北偏西60°的D點(diǎn)有一艘輪船發(fā)出求救信號,位于B點(diǎn)南偏西60°且與B點(diǎn)相距20海里的C點(diǎn)的救援船立即前往營救,其航行速度為30海里/小時(shí),該救援船到達(dá)D點(diǎn)需要多長時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-8解三角形應(yīng)用舉例(解析版) 題型:選擇題
要測量底部不能到達(dá)的東方明珠電視塔的高度,在黃埔江西岸選擇C、D兩觀測點(diǎn),在C、D兩點(diǎn)測得塔頂?shù)难鼋欠謩e為45°,30°,在水平面上測得電視塔底與C地連線及C、D兩地連線所成的角為120°,C、D兩地相距500 m,則電視塔的高度是( )
A.100 m B.400 m C.200 m D.500 m
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-7正弦定理和余弦定理(解析版) 題型:選擇題
已知在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且tanC=,則角C為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-4正弦型函數(shù)的圖象及應(yīng)用(解析版) 題型:選擇題
已知函數(shù)f(x)=Asin(x+φ)(A>0,0<φ<)的部分圖象如圖所示,P,Q分別為該圖象的最高點(diǎn)和最低點(diǎn),點(diǎn)P的坐標(biāo)為(2,A),點(diǎn)R的坐標(biāo)為(2,0).若∠PRQ=,則y=f(x)的最大值及φ的值分別是( )
A.2, B.,
C., D.2,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com