BC是單位圓A的一條直徑,F(xiàn)是線段AB上的點(diǎn),且=2,若DE是圓A中繞圓心A運(yùn)動(dòng)的一條直徑,則·的值是(  )

A.- B.- C.- D.不確定

 

B

【解析】依題意得·=()·()=()·()=2-2=()2-2=-1=-,故選B.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:選擇題

等差數(shù)列{an}的前n項(xiàng)和是Sn,且a1=10,a5=6,那么下列不等式中不成立的是(  )

A.a(chǎn)10+a11>0 B.S21<0

C.a(chǎn)11+a12<0 D.當(dāng)n=10時(shí),Sn最大

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-3平面向量的數(shù)量積及應(yīng)用(解析版) 題型:解答題

在△ABC中,角A、B、C的對(duì)邊分別為a、b、c.若··=k(k∈R).

(1)判斷△ABC的形狀;

(2)若k=2,求b的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-2平面向量的基本定理及坐標(biāo)表示(解析版) 題型:解答題

已知向量a=(1,2),b=(2,-2).

(1)設(shè)c=4a+b,求(b·c)a;

(2)若a+λb與a垂直,求λ的值;

(3)求向量a在b方向上的投影.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-2平面向量的基本定理及坐標(biāo)表示(解析版) 題型:選擇題

已知△ABC的頂點(diǎn)分別為A(2,1),B(3,2),C(-3,-1),BC邊上的高為AD,則點(diǎn)D的坐標(biāo)為(  )

A.(-,) B.(,-)

C.() D.(-,-)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-1向量的概念及運(yùn)算(解析版) 題型:填空題

在?ABCD中,=a,=b,=3,M為BC的中點(diǎn),則=________(用a,b表示).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-8解三角形應(yīng)用舉例(解析版) 題型:解答題

某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛,假設(shè)該小艇沿直線方向以v海里/小時(shí)的航行速度勻速行駛,經(jīng)過t小時(shí)與輪船相遇.

(1)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?

(2)假設(shè)小艇的最高航行速度只能達(dá)到30海里/小時(shí),試設(shè)計(jì)航行方案(即確定航行方向和航行速度的大小),使得小艇能以最短時(shí)間與輪船相遇,并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-7正弦定理和余弦定理(解析版) 題型:選擇題

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足csinA=acosC,則sinA-cos(B+)的最大值為(  )

A. B.2 C. D.2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-5兩角和與差的正弦、余弦和正切(解析版) 題型:選擇題

已知cosα=,cos(α+β)=-,α,β都是銳角,則cosβ=(  )

A.- B.- C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案