【題目】【2017鎮(zhèn)江一模】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,

斜邊現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位

置分別記為點

(1)若甲乙都以每分鐘的速度從點出發(fā)在各自的大道上奔走,到大道的另一端

時即停,乙比甲遲分鐘出發(fā),當乙出發(fā)分鐘后,求此時甲乙兩人之間的距離;

(2)設,乙丙之間的距離是甲乙之間距離的倍,且,請將甲

乙之間的距離表示為的函數(shù),并求甲乙之間的最小距離

【答案】見解析

【解析】解:(1)依題意得,

中,,,……2分

中,由余弦定理得:

.……6分

答:甲乙兩人之間的距離為m.……7分

2)由題意得,,

在直角三角形中,,……9分

中,由正弦定理得,即

,,……12分

所以當時,有最小值.……13

答:甲乙之間的最小距離為.……14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】【2017湖南長沙二!已知函數(shù),.

1證明:,直線都不是曲線的切線;

2,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若一三角形三邊所在的直線方程分別為x+2y﹣5=0,y﹣2=0,x+y﹣4=0,則能夠覆蓋此三角形且面積最小的圓的方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,動點P在底面ABCD內,且P到棱AD的距離與到面對角線BC1的距離相等,則點P的軌跡是( 。
A.線段
B.橢圓的一部分
C.雙曲線的一部分
D.拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】蘇北四市2016-2017學年度高三年級第一學期期末調研】如圖,已知兩鎮(zhèn)分別位于東西湖岸處和湖中小島的處,點

正西方向處,現(xiàn)計劃鋪設一條電纜聯(lián)通兩鎮(zhèn),有

兩種鋪設方案:沿線段在水下鋪設;在湖岸上選一點,先沿線段在地

下鋪設,再沿線段在水下鋪設,預算地下、水下的電纜鋪設費用分別為萬元

萬元

(1)求兩鎮(zhèn)間的距離;

(2)應該如何鋪設,使總鋪設費用最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017遼寧葫蘆島市二模】已知數(shù)列滿足: .

(1)求數(shù)列的通項公式;

(2)若,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前項和為Sn , 且Sn= ,{bn}為等差數(shù)列,且a1=b1 , a2(b2﹣b1)=a1
(1)求數(shù)列{an}和{bn}通項公式;
(2)設 ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊分別是a、b、c,且滿足csinA﹣ acosC=0.
(1)求角C的大。
(2)若c=2,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017安徽淮北二!選修4—4:坐標系與參數(shù)方程

在直角坐標系中, 為極點, 軸正半軸為極軸建立極坐標系, 的極坐標方程為,直線的參數(shù)方程為 (t為參數(shù)), 直線和圓交于兩點。

(Ⅰ)求圓心的極坐標;

(Ⅱ)直線軸的交點為,求

查看答案和解析>>

同步練習冊答案