精英家教網 > 高中數學 > 題目詳情

如圖,在長方體ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,點E在棱AB上移動.

(1)當E為AB的中點時,求點E到面ACD1的距離;

(2)AE等于何值時,二面角D1—EC—D的大小為

解:解法(一)

(1)設點E到面ACD1的距離為h,在△ACD1中,AC=CD1=,AD1=, 故

             

 

 

………(6分)

(2)過D作DH⊥CE于H,連D1H、DE,則D1H⊥CE,

∴∠DHD1為二面角D1—EC—D的平面角.

設AE=x,則BE=2-x

      ………(12分)

       解法(二):以D為坐標原點,直線DA,DC,DD1分別為x,y,z軸,建立空間直角坐標系,設AE=x,則A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)

(1)因為E為AB的中點,則E(1,1,0),

從而,                            ,

      

設平面ACD1的法向量為,

       則

       也即,得,從而,所以點E到平面AD1C的距離為

                         ………………………………………(6分)

(2)設平面D1EC的法向量,∴

       由  令b=1, ∴c=2,a=2-x

       ∴

依題意

(不合,舍去),

∴AE=時,二面角D1—EC—D的大小為.      ……………………(12分)

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖在長方體ABCD-A1B1C1D1中,三棱錐A1-ABC的面是直角三角形的個數為:
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,定義八個頂點都在某圓柱的底面圓周上的長方體叫做圓柱的內接長方體,圓柱也叫長方體的外接圓柱.設長方體ABCD-A1B1C1D1的長、寬、高分別為a,b,c(其中a>b>c),那么該長方體的外接圓柱側面積的最大值等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中數學 來源:2010-2011年四川省成都市高二3月月考數學試卷 題型:填空題

(文科做)(本題滿分14分)如圖,在長方體

ABCDA1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.

(1)證明:D1EA1D;

(2)當EAB的中點時,求點E到面ACD1的距離;

(3)AE等于何值時,二面角D1ECD的大小為.                      

 

 

 

(理科做)(本題滿分14分)

     如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =,AA1 =M為側棱CC1上一點,AMBA1

   (Ⅰ)求證:AM⊥平面A1BC;

   (Ⅱ)求二面角BAMC的大;

   (Ⅲ)求點C到平面ABM的距離.

 

 

 

 

 

查看答案和解析>>

同步練習冊答案