【題目】已知函數(shù),

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)設(shè)函數(shù),若,且上恒成立,求的取值范圍;

3)設(shè)函數(shù),若,且上存在零點(diǎn),求的取值范圍.

【答案】1)函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為23

【解析】

1)由,對(duì)其求導(dǎo),用導(dǎo)函數(shù)方法判斷其單調(diào)性即可;

2)由,當(dāng)時(shí),根據(jù)二次函數(shù)的性質(zhì),即可求出結(jié)果;當(dāng),由分離參數(shù)的方法得到恒成立,設(shè),用導(dǎo)數(shù)的方法求出其最小值,即可得出結(jié)果;

3)根據(jù)題中條件,將上存在零點(diǎn),轉(zhuǎn)化為上有解,設(shè),用導(dǎo)數(shù)的方法判斷,進(jìn)而得到,再令,對(duì)其求導(dǎo),用導(dǎo)數(shù)的方法研究其單調(diào)性,得出最小值,即可求出結(jié)果.

【解】(1)當(dāng)時(shí),,所以.

,得.

因?yàn)楹瘮?shù)gx)的定義域?yàn)?/span>,

當(dāng)時(shí),;當(dāng)時(shí),,

所以函數(shù)gx)的單調(diào)減區(qū)間為(0,2),單調(diào)增區(qū)間為.

2)因?yàn)?/span>,所以

當(dāng)時(shí),由恒成立,

則有當(dāng),即時(shí),恒成立;

當(dāng),即時(shí),,

所以.

綜上,.

當(dāng)時(shí),由恒成立,即恒成立.

設(shè),則.

,得,

且當(dāng)時(shí),;當(dāng)時(shí),,

所以,所以.

綜上所述,b的取值范圍是.

3.

因?yàn)?/span>u(x)上存在零點(diǎn),所以上有解,

上有解.

又因?yàn)?/span>,即

所以上有解.

設(shè),則

,得,且當(dāng)時(shí),;當(dāng)時(shí),,所以,即,所以,

因此.

設(shè),則

同理可證:,所以,

于是上單調(diào)遞減,在上單調(diào)遞增,

所以,故.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)(2017·長(zhǎng)春市二模)如圖,在四棱錐中,底面是菱形,平面,,點(diǎn),分別為中點(diǎn).

(1)求證:直線平面;

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)為,且過坐標(biāo)原點(diǎn).數(shù)列的前項(xiàng)和為,點(diǎn)在二次函數(shù)的圖象上.

)求數(shù)列的通項(xiàng)公式;

)設(shè),數(shù)列的前項(xiàng)和為,若對(duì)恒成立,求實(shí)數(shù)的取值范圍;

)在數(shù)列中是否存在這樣一些項(xiàng):,這些項(xiàng)都能夠構(gòu)成以為首項(xiàng),為公比的等比數(shù)列?若存在,寫出關(guān)于的表達(dá)式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】舉行動(dòng)物運(yùn)動(dòng)會(huì)其中有小兔大兔接力賽跑一項(xiàng),跑道從起點(diǎn)經(jīng)過點(diǎn)再到終點(diǎn),其中米,米,規(guī)定小兔跑第一棒從,大兔在處接力完成跑第二棒從,假定接力賽跑時(shí)小兔大兔的各自速度都是均勻的,且它們的速度之和為定值10/秒,試問小兔和大兔應(yīng)以怎樣的速度接力賽跑,才能使接力賽成績(jī)最好(所需時(shí)間最短),并求其最短時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若關(guān)于x的方程有解,求實(shí)數(shù)a的最小整數(shù)值;

2)若對(duì)任意的,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù), 是自然對(duì)數(shù)的底數(shù), ).

(Ⅰ)求證:

(Ⅱ)已知表示不超過的最大整數(shù),如 ,若對(duì)任意,都存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (是自然對(duì)數(shù)的底數(shù))

(1)求證:

(2)若不等式上恒成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出.具體操作是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過程逐次得到各個(gè)圖形,如圖.

現(xiàn)在上述圖(3)中隨機(jī)選取一個(gè)點(diǎn),則此點(diǎn)取自陰影部分的概率為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右兩焦點(diǎn)分別為、.

1)若矩形的邊軸上,點(diǎn)、均在上,求該矩形繞軸旋轉(zhuǎn)一周所得圓柱側(cè)面積的取值范圍;

2)設(shè)斜率為的直線交于兩點(diǎn),線段的中點(diǎn)為),求證:

3)過上一動(dòng)點(diǎn)作直線,其中,過作直線的垂線交軸于點(diǎn),問是否存在實(shí)數(shù),使得恒成立,若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案