f(x)是定義在R上的奇函數(shù),x≤0時,f(x)=-x(x+2),則x>0時,f(x)=


  1. A.
    -x2+2x
  2. B.
    -x2-2x
  3. C.
    x2-2x
  4. D.
    x2+2x
C
分析:先設(shè)x>0,則-x<0,代入x≤0時,f(x)=-x(x+2)并進(jìn)行化簡,再利用f(x)=-f(-x)進(jìn)行求解即可.
解答:設(shè)x>0,則-x<0,
∵當(dāng)x≤0時,f(x)=-x(x+2),
∴f(-x)=-(-x)(-x+2)=-x2+2x,
∵f(x)是定義在R上的奇函數(shù),
∴f(x)=-f(-x)=x2-2x,
故選C.
點評:本題主要考查了函數(shù)奇偶性的應(yīng)用,即根據(jù)奇偶性對應(yīng)的關(guān)系式,將所求的函數(shù)解析式進(jìn)行轉(zhuǎn)化,轉(zhuǎn)化到已知范圍內(nèi)進(jìn)行求解,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且x≥0時,f(x)=(
1
2
x,函數(shù)f(x)的值域為集合A.
(Ⅰ)求f(-1)的值;
(Ⅱ)設(shè)函數(shù)g(x)=
-x2+(a-1)x+a
的定義域為集合B,若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的函數(shù),對任意實數(shù)m、n,都有f(m)•f(n)=f(m+n),且當(dāng)x<0時,f(x)>1.
(1)證明:①f(0)=1;②當(dāng)x>0時,0<f(x)<1;③f(x)是R上的減函數(shù);
(2)設(shè)a∈R,試解關(guān)于x的不等式f(x2-3ax+1)•f(-3x+6a+1)≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)單調(diào)遞減,若x1+x2>0,則f(x1)+f(x2)的值(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在R上的奇函數(shù),滿足f(x+2)=f(x),當(dāng)x∈(-2,0)時,f(x)=2x-2,則f(-3)的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的函數(shù),且對任意實數(shù)x,恒有f(x+2)=-3f(x).當(dāng)x∈[0,2]時,f(x)=2x-x2.則f(0)+f(-1)+f(-1)+…+f(-2014)=( 。
A、-
3
4
(1-31007
B、-
3
4
(1+31007
C、-
1
4
(1-
1
31007
D、-
1
4
(1+
1
31007

查看答案和解析>>

同步練習(xí)冊答案