已知函數(shù),則函數(shù)f(x)-lnx的零點個數(shù)為( )
A.1
B.2
C.3
D.4
【答案】分析:函數(shù)f(x)-lnx的零點個數(shù) 即函數(shù)f(x)與函數(shù) y=lnx的交點個數(shù),結(jié)合圖形得出結(jié)論.
解答:解:函數(shù)f(x)-lnx的零點個數(shù) 即函數(shù)f(x)與函數(shù) y=lnx的交點個數(shù),如圖所示:
由于函數(shù)f(x)與函數(shù) y=lnx 的圖象有三個交點,故函數(shù)f(x)-lnx的零點個數(shù)為 3,
故選 C.

點評:本題考查函數(shù)的零點的定義,體現(xiàn)了數(shù)形結(jié)合和轉(zhuǎn)化的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),當(dāng)x<0時,f(x)=x2+2x-1
(1)若f(x)為R上的奇函數(shù),則函數(shù)在R上的解析式為?
(2)若f(x)為R上的偶函數(shù),則函數(shù)在R上的解析式為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下x,f(x)對應(yīng)值表:
x -2 -1 0
f(x) -10 3 2
則函數(shù)f(x)在區(qū)間
(-2,-1)
(-2,-1)
有零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x2-2mx+n|,x∈R,下列結(jié)論:
①函數(shù)f(x)是偶函數(shù);
②若f(0)=f(2)時,則函數(shù)f(x)的圖象必關(guān)于直線x=1對稱;
③若m2-n≤0,則函數(shù)f(x)在區(qū)間(-∞,m]上是減函數(shù);
④函數(shù)f(x)有最小值|n-m2|.其中正確的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-bx2的圖象過點P(-1,2),且在點P處的切線恰與直線x-3y=0垂直.則函數(shù)f(x)的解析式為
f(x)=x3+3x2
f(x)=x3+3x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知函數(shù)數(shù)學(xué)公式,則函數(shù)f(x)的表達式為


  1. A.
    f(x)=x2+2x+1(x≥0)
  2. B.
    f(x)=x2+2x+1(x≥-1)
  3. C.
    f(x)=-x2-2x-1(x≥0)
  4. D.
    f(x)=-x2-2x-1(x≥-1)

查看答案和解析>>

同步練習(xí)冊答案