已知函數(shù)f(x)=2acos2x+bsinxcosx,且f(0)=2,f()=+.

(1)求a,b的值;

(2)求f(x)的最大值及取得最大值時x的集合;

(3)寫出函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.

解:(1)由題意得方程組解得

(2)由(1)有f(x)=2cos2x+2sinxcosx=1+cos2x+sin2x

=1+sin(2x+),

∴當2x+=2kπ+(k∈Z),

即x=kπ+(k∈Z)時,f(x)取得最大值1+,

∴f(x)的最大值為1+.

取到最大值時x的集合是{x|x=kπ+,k∈Z}.

(3)∵x∈[0,π],

∴2x+∈[,].要使函數(shù)f(x)遞減,

則應(yīng)2x+∈[,],可得x∈[,],

∴函數(shù)f(x)在[0,π]上的遞減區(qū)間為[,].

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當x∈[0,2π]時,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個零點;
(3)若f(x)+mx>1對一切的正實數(shù)x均成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當x=
3
3
時,函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習冊答案