20.已知平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為60°,$\overrightarrow a=(2,0)$,$|{\overrightarrow b}$|=1,則$|{\overrightarrow a+2\overrightarrow b}$|=2$\sqrt{3}$.

分析 計算$\overrightarrow{a}•\overrightarrow$,再計算($\overrightarrow{a}+2\overrightarrow$)2,開方即可得出$|{\overrightarrow a+2\overrightarrow b}$|.

解答 解:|$\overrightarrow{a}$|=2,$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$||$\overrightarrow$|cos60°=2×$1×\frac{1}{2}$=1.
∴($\overrightarrow{a}+2\overrightarrow$)2=${\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow+4{\overrightarrow}^{2}$=12,
∴$|{\overrightarrow a+2\overrightarrow b}$|=2$\sqrt{3}$.
故答案為:2$\sqrt{3}$.

點評 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}中,an=2-n,{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前n項和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求函數(shù)的值域:y=2sin($\frac{x}{2}$-$\frac{π}{6}$)+1,x∈[-π,π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=sin(ωx+φ)(x∈R)$(ω>0,|φ|<\frac{π}{2})$的部分圖象如圖所示,如果${x_1},{x_2}∈(\frac{π}{6},\frac{2π}{3})$,且f(x1)=f(x2),則f(x1+x2)=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在三棱錐P-ABC中,∠PAC=∠BAC=90°,PA=PB,點D,F(xiàn)分別為BC,AB的中點.
(1)求證:直線DF∥平面PAC;
(2)求證:PF⊥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知直線l:y=kx+b,曲線C:x2+y2=1,則“b=1”是“直線l與曲線C有公共點”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{x+6,x≤2}\\{{3^x}-1,x>2}\end{array}}\right.$,若f(a)=80,則f(a-4)=(  )
A.0B.3C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$和橢圓C2:$\frac{{x}^{2}}{2}+{y}^{2}$=1的離心率相同,且點($\sqrt{2}$,1)在橢圓C1上.
(1)求橢圓C1的方程;
(2)設(shè)P為橢圓C2上一動點,過點P作直線交橢圓C1于A、C兩點,且P恰為弦AC的中點.試判斷△AOC的面積是否為定值?若是,求出此定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}{x-2y+2≥0}\\{3x-2y-6≤0}\\{x≥0,y≥0}\end{array}\right.$若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則a2+b2的最小值為( 。
A.$\frac{25}{4}$B.$\frac{49}{9}$C.$\frac{144}{25}$D.$\frac{225}{49}$

查看答案和解析>>

同步練習(xí)冊答案