已知函數(shù)上是增函數(shù),上是減函數(shù).
(1)求函數(shù)的解析式;
(2)若時,恒成立,求實數(shù)m的取值范圍;
(3)是否存在實數(shù)b,使得方程在區(qū)間上恰有兩個相異實數(shù)根,若存在,求出b的范圍,若不存在說明理由.

;⑵;⑶

解析試題分析:⑴求導數(shù),求駐點,根據(jù)駐點函數(shù)值為0,得到的方程,進一步得到函數(shù)解析式.
⑵通過求導數(shù)、求駐點及駐點的唯一性,得到函數(shù)的最值,使
⑶構造函數(shù),即,
利用導數(shù)法,研究函數(shù)的單調區(qū)間,得增區(qū)間,減區(qū)間
從而要使方程有兩個相異實根,須有,得解.
試題解析:⑴
依題意得,所以,從而  2分

,得(舍去),所以      6分
⑶設,
,.                          7分
,令,得;令,得
所以函數(shù)的增區(qū)間,減區(qū)間
要使方程有兩個相異實根,則有
,解得
考點:應用導數(shù)研究函數(shù)的單調性、極值,函數(shù)與方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若曲線在x=l和x=3處的切線互相平行,求a的值及函數(shù)的單調區(qū)間;
(2)設,若對任意,均存在,使得,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中a>0.
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)若直線是曲線的切線,求實數(shù)a的值;
(Ⅲ)設,求在區(qū)間上的最大值(其中e為自然對的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) 
(I)函數(shù)在區(qū)間上是增函數(shù)還是減函數(shù)?證明你的結論;
(II)當時,恒成立,求整數(shù)的最大值;
(Ⅲ)試證明: 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)若在區(qū)間單調遞增,求的最小值;
(2)若,對,使成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),),
(Ⅰ)證明:當時,對于任意不相等的兩個正實數(shù)、,均有成立;
(Ⅱ)記,若上單調遞增,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,求的極值;(2)當時,討論的單調性;
(3)若對任意的恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,某自來水公司要在公路兩側排水管,公路為東西方向,在路北側沿直線排水管,在路南側沿直線排水管(假設水管與公路的南,北側在一條直線上且水管的大小看作為一條直線),現(xiàn)要在矩形區(qū)域ABCD內沿直線EF將接通.已知AB = 60m,BC = 60m,公路兩側排管費用為每米1萬元,穿過公路的EF部分的排管費用為每米2萬元,設EF與AB所成角為.矩形區(qū)域內的排管費用為W.

(1)求W關于的函數(shù)關系式;
(2)求W的最小值及相應的角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知x=1是函數(shù)的一個極值點,
(Ⅰ)求a的值;
(Ⅱ)當時,證明:

查看答案和解析>>

同步練習冊答案