已知函數(shù),其中a>0.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線是曲線的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè),求在區(qū)間上的最大值(其中e為自然對的底數(shù))。

(Ⅰ)函數(shù)的單調(diào)遞增區(qū)間為(0,2),遞減區(qū)間為(-∞,0)和(2,+∞);(Ⅱ);(Ⅲ)在區(qū)間上的最大值為0.

解析試題分析:(Ⅰ)求函數(shù)的單調(diào)區(qū)間,首先對函數(shù)求導(dǎo),得函數(shù)導(dǎo)函數(shù),直接讓導(dǎo)函數(shù)大于0,解出大于零的范圍,就求出增區(qū)間,令導(dǎo)函數(shù)小于0,解出小于零的范圍,從而求出減區(qū)間;(Ⅱ)直線是曲線的切線,由導(dǎo)數(shù)的幾何意義,利用切線的斜率即為切點(diǎn)處的導(dǎo)數(shù)值,以及切點(diǎn)即在直線上,又在曲線上,即為的共同點(diǎn),聯(lián)立方程組,解方程組,即可求實(shí)數(shù)的值;(Ⅲ)求在區(qū)間上的最大值,可利用導(dǎo)數(shù)來求,先求出的解析式,由的解析式求出的導(dǎo)函數(shù),令的導(dǎo)函數(shù),解出的值,從而確定最大值,由于含有參數(shù),因此需分情況討論,從而求得其在區(qū)間上的最大值.
試題解析:(Ⅰ)①
,則,又的定義域是

∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,2),遞減區(qū)間為(-∞,0)和(2,+∞)(4分)
(II)設(shè)切點(diǎn)為  解得      7分
(III)      
,則,
①當(dāng)時,單調(diào)增加     9分
②當(dāng)時,單調(diào)減少,在單調(diào)增加;
時,;
時,;        11分
③當(dāng)時,上單調(diào)遞減,
綜上所述,時,;
時,。        14分
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80,已知貨車每小時的運(yùn)輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為a元.
(1)將全程運(yùn)輸成本y(元)表示為速度v()的函數(shù),并指出這個函數(shù)的定義域;
(2)為了使全程運(yùn)輸成本最小,貨車應(yīng)以多大的速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)討論的單調(diào)性;
(Ⅱ)若在(1,+)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題13分)己知函數(shù)。
(1)試探究函數(shù)的零點(diǎn)個數(shù);
(2)若的圖象與軸交于兩點(diǎn),中點(diǎn)為,設(shè)函數(shù)的導(dǎo)函數(shù)為, 求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(k為常數(shù),e=2.71828……是自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與x軸平行。
(1)求k的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),其中的導(dǎo)函數(shù),證明:對任意,。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).若函數(shù)依次在處取到極值.
(1)求的取值范圍;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)上是增函數(shù),上是減函數(shù).
(1)求函數(shù)的解析式;
(2)若時,恒成立,求實(shí)數(shù)m的取值范圍;
(3)是否存在實(shí)數(shù)b,使得方程在區(qū)間上恰有兩個相異實(shí)數(shù)根,若存在,求出b的范圍,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時,求曲線處的切線方程;
(Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若在上存在一點(diǎn),使得成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案