【題目】要想得到函數(shù)y=sin2x+1的圖象,只需將函數(shù)y=cos2x的圖象( )
A.向左平移 個單位,再向上平移1個單位
B.向右平移 個單位,再向上平移1個單位
C.向左平移 個單位,再向下平移1個單位
D.向右平移 個單位,再向上平移1個單位
【答案】B
【解析】解:由函數(shù)y=cos2x可化簡為:y=sin( )=sin[2(x+ )], ∴向右平移 個單位可得y=sin2x的圖象,
再向上平移1個單位,可得y=sin2x+1的圖象.
故選B
【考點精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識點,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=1時,求函數(shù)f(x)在x=e﹣1處的切線方程;
(2)當(dāng) 時,討論函數(shù)f(x)的單調(diào)性;
(3)若x>0,求函數(shù) 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sinωx(>0)的圖象向右平移 個單位得到函數(shù)y=g(x)的圖象,并且函數(shù)g(x)在區(qū)間[ , ]上單調(diào)遞增,在區(qū)間[ ]上單調(diào)遞減,則實數(shù)ω的值為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有、、三座城市,城在城的正西方向,且兩座城市之間的距離為;城在城的正北方向,且兩座城市之間的距離為.由城到城只有一條公路,甲有急事要從城趕到城,現(xiàn)甲先從城沿公路步行到點(不包括、兩點)處,然后從點處開始沿山路趕往城.若甲在公路上步行速度為每小時,在山路上步行速度為每小時,設(shè)(單位:弧度),甲從城趕往城所花的時間為(單位:).
(1)求函數(shù)的表達式,并求函數(shù)的定義域;
(2)當(dāng)點在公路上何處時,甲從城到達城所花的時間最少,并求所花的最少的時間的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為 (α為參數(shù)).以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+ )= .l與C交于A、B兩點. (Ⅰ)求曲線C的普通方程及直線l的直角坐標(biāo)方程;
(Ⅱ)設(shè)點P(0,﹣2),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知且,設(shè)命題:函數(shù)在上單調(diào)遞減,命題:對任意實數(shù),不等式恒成立.
(1)寫出命題的否定,并求非為真時,實數(shù)的取值范圍;
(2)如果命題“”為真命題,且“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列的前項和為,滿足.
(Ⅰ)(i)求數(shù)列的通項公式;
(ii)已知對于,不等式恒成立,求實數(shù)的最小值;
(Ⅱ) 數(shù)列的前項和為,滿足,是否存在非零實數(shù),使得數(shù)列為等比數(shù)列? 并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)定義域為R,f(﹣x)=f(x),f(x)=f(2﹣x),當(dāng)x∈[0,1]時,f(x)=x3 , 則函數(shù)g(x)=|cos(πx)|﹣f(x)在區(qū)間[﹣ , ]上的所有零點的和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于任意,若數(shù)列滿足,則稱這個數(shù)列為“數(shù)列”.
(1)已知數(shù)列:,,是“數(shù)列”,求實數(shù)的取值范圍;
(2)已知等差數(shù)列的公差,前項和為,數(shù)列是“數(shù)列”,求首項的取值范圍;
(3)設(shè)數(shù)列的前項和為,,且,. 設(shè),是否存在實數(shù),使得數(shù)列為“數(shù)列”. 若存在,求實數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com