(本小題12分)已知f(x)=在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實數(shù)a的值組成的集合A;
(Ⅱ)設關于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.
(1) A={a|-1≤a≤1} (2) {m|m≥2,或m≤-2}
【解析】
試題分析:解:(Ⅰ)f'(x)=4+2 ∵f(x)在[-1,1]上是增函數(shù),
∴f'(x)≥0對x∈[-1,1]恒成立,
即x2-ax-2≤0對x∈[-1,1]恒成立. ①
設(x)=x2-ax-2,
方法一:
(1)=1-a-2≤0,
① -1≤a≤1,
(-1)=1+a-2≤0.
∵對x∈[-1,1],只有當a=1時,f'(-1)=0以及當a=-1時,f'(1)=0
∴A={a|-1≤a≤1}.
方法二:
(Ⅱ)由
∵△=a2+8>0
∴x1,x2是方程x2-ax-2=0的兩非零實根,
從而|x1-x2|==.
∵-1≤a≤1,∴|x1-x2|=≤3.
要使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,
當且僅當m2+tm+1≥3對任意t∈[-1,1]恒成立,
即m2+tm-2≥0對任意t∈[-1,1]恒成立. ②
設g(t)=m2+tm-2=mt+(m2-2),
方法一:
②g(-1)=m2-m-2≥0,
g(1)=m2+m-2≥0,
m≥2或m≤-2.
所以,存在實數(shù)m,使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,其取值范圍是{m|m≥2,或m≤-2}.
方法二:
當m=0時,②顯然不成立;
當m≠0時,
m≥2或m≤-2.
所以,存在實數(shù)m,使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,其取值范圍是{m|m≥2,或m≤-2}.
考點:函數(shù)單調(diào)性和函數(shù)與方程
點評:解決該試題的關鍵是能利用導數(shù)的符號判定函數(shù)單調(diào)性,同時能結合方程的思想來求解參數(shù)的范圍,屬于基礎題。
科目:高中數(shù)學 來源: 題型:
(本小題12分)已知,,直線與函數(shù)、的k*s#5^u圖象都相切,且與函數(shù)的k*s#5^u圖象的k*s#5^u切點的k*s#5^u橫坐標為.
(Ⅰ)求直線的k*s#5^u方程及的k*s#5^u值;
(Ⅱ)若(其中是的k*s#5^u導函數(shù)),求函數(shù)的k*s#5^u最大值;
(Ⅲ)當時,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年四川省瀘縣二中高2013屆春期重點班第一學月考試數(shù)學試題 題型:解答題
(本小題12分)已知等比數(shù)列中,。
(1)求數(shù)列的通項公式;
(2)設等差數(shù)列中,,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源:2011云南省潞西市高二上學期期末考試數(shù)學試卷 題型:解答題
(本小題12分)
已知頂點在原點,焦點在軸上的拋物線與直線交于P、Q兩點,|PQ|=,求拋物線的方程
查看答案和解析>>
科目:高中數(shù)學 來源:2010年浙江省杭州市七校高二上學期期中考試數(shù)學文卷 題型:解答題
(本小題12分)
已知圓C:;
(1)若直線過且與圓C相切,求直線的方程.
(2)是否存在斜率為1直線,使直線被圓C截得弦AB,以AB為直徑的圓經(jīng)過原點O. 若存在,求
出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2012屆山東省兗州市高二下學期期末考試數(shù)學(文) 題型:解答題
(本小題12分)已知函數(shù)
(1) 求這個函數(shù)的導數(shù);
(2) 求這個函數(shù)的圖像在點處的切線方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com