【題目】已知橢圓的左、右焦點(diǎn)為,左右兩頂點(diǎn),點(diǎn)為橢圓上任意一點(diǎn),滿足直線的斜率之積為,且的最大值為4.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線與過點(diǎn)且與軸垂直的直線交于點(diǎn),過點(diǎn),垂足分別為兩點(diǎn),求證:.

【答案】1; 2)見解析.

【解析】

利用直線的斜率之積為,得到的關(guān)系式,再利用橢圓定義可得,,即可求出,得到橢圓的標(biāo)準(zhǔn)方程;

求得及焦點(diǎn)坐標(biāo),設(shè)直線,的中點(diǎn),設(shè),聯(lián)立消去,求出k表示,兩種情況,分別證明即可.

根據(jù)題意,

設(shè),所以,

所以,故,從而橢圓的標(biāo)準(zhǔn)方程為.

證明:設(shè)直線,則:,的中點(diǎn)為

聯(lián)立,消去整理得:

設(shè),由韋達(dá)定理得:,解得:,

故有: ,

當(dāng)時(shí),,,此時(shí)軸,

所以四邊形為矩形,所以,

所以.

當(dāng)時(shí),因?yàn)?/span>,

所以直線,即:,

所以點(diǎn)到直線的距離,

即知:,所以以為直徑的圓與直線相切,

因?yàn)樗倪呅?/span>為直角梯形,的中點(diǎn)為,

所以.

綜上可知,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程為是橢圓上的一點(diǎn),且在第一象限內(nèi),過且斜率等于-1的直線與橢圓交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為

(1)證明:直線的斜率為定值;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

討論函數(shù)的極值點(diǎn)的個(gè)數(shù);

若函數(shù)有兩個(gè)極值點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

1)求函數(shù)的值域;

2)若不等式對任意恒成立,求實(shí)數(shù)的取值范圍;

3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題,為了了解強(qiáng)度(單位:分貝)與聲音能量(單位:)之間的關(guān)系,將測量得到的聲音強(qiáng)度和聲音能量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

表中

1)根據(jù)表中數(shù)據(jù),求聲音強(qiáng)度關(guān)于聲音能量的回歸方程;

2)當(dāng)聲音強(qiáng)度大于60分貝時(shí)屬于噪音,會產(chǎn)生噪聲污染,城市中某點(diǎn)共受到兩個(gè)聲源的影響,這兩個(gè)聲源的聲音能量分別是,且.已知點(diǎn)的聲音能量等于聲音能量之和.請根據(jù)(1)中的回歸方程,判斷點(diǎn)是否受到噪聲污染的干擾,并說明理由.

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為,左右兩頂點(diǎn),點(diǎn)為橢圓上任意一點(diǎn),滿足直線的斜率之積為,且的最大值為4.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知直線軸的交點(diǎn)為,過點(diǎn)的直線與橢圓相交與兩點(diǎn),連接點(diǎn)并延長,交軌跡于一點(diǎn).求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐的底面ABCD為菱形,,側(cè)面PAD與底面ABCD所成的角為,是等邊三角形,點(diǎn)P到平面ABCD距離為

1)證明:;

2)求二面角余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中, ,動(dòng)點(diǎn)滿足:以為直徑的圓與軸相切.

(1)求點(diǎn)的軌跡方程;

(2)設(shè)點(diǎn)的軌跡為曲線,直線過點(diǎn)且與交于兩點(diǎn),當(dāng)的面積之和取得最小值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列的各項(xiàng)均為整數(shù),滿足:,且,其中

1)若,寫出所有滿足條件的數(shù)列

2)求的值;

3)證明:

查看答案和解析>>

同步練習(xí)冊答案