【題目】如圖,平面四邊形ABCD,,,將沿BD翻折到與面BCD垂直的位置.

證明:面ABC;

若E為AD中點,求二面角的大。

【答案】(1)見證明;(2)

【解析】

推導出面BCD,從而,再求出,,,由此能證明平面ABC.

以B為原點,在平面BCD中,過B作BD的垂線為x軸,以BD為y軸,以BA為z軸,建立空間直角坐標系,利用向量法能求出二面角的大。

證明:平面四邊形ABCD,,,

面BCD,,面平面,

面BCD,

,,

,,,

,平面ABC.

解:面BCD,如圖以B為原點,在平面BCD中,過B作BD的垂線為x軸,

以BD為y軸,以BA為z軸,建立空間直角坐標系,

0,0,,

是AD的中點,

,,

令平面BCE的一個法向量為y,,

,取,得

面ABC,平面ABC的一個法向量為,

,,

二面角的大小為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),,,若對任意成立,且數(shù)列滿足:,.

(1)求函數(shù)的解析式;

(2)求證:;

(3)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程(t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為:

直線l的參數(shù)方程化為極坐標方程;

求直線l與曲線C交點的極坐標其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{n}中1=3,已知點(n,n+1)在直線y=x+2上,

(1)求數(shù)列{n}的通項公式;

(2)若bnn3n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,一條準線方程為

⑴求橢圓的方程;

⑵設(shè)為橢圓上的兩個動點,為坐標原點,且

①當直線的傾斜角為時,求的面積;

②是否存在以原點為圓心的定圓,使得該定圓始終與直線相切?若存在,請求出該定圓方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車給市民出行帶來了諸多便利,某公司購買了一批單車投放到某地給市民使用.據(jù)市場分析,每輛單車的營運累計收入 (單位:元)與營運天數(shù)滿足.

(1)要使營運累計收入高于800元,求營運天數(shù)的取值范圍;

(2)每輛單車營運多少天時,才能使每天的平均營運收入最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若對于曲線f(x)=-exx(e為自然對數(shù)的底數(shù))的任意切線l1,總存在曲線g(x)=ax+2cosx的切線l2,使得l1l2,則實數(shù)a的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,點在以為直徑的圓上,平面平面,點在線段上,且,,,點的重心,點的中點.

(1)求證:平面

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左,右焦點,上頂點為,為橢圓上任意一點,且的面積最大值為.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)若點.為橢圓上的兩個不同的動點,且為坐標原點),則是否存在常數(shù),使得點到直線的距離為定值?若存在,求出常數(shù)和這個定值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案