已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a32=6a6,且S1、2S2、3S3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn-an}是一個(gè)首項(xiàng)為-6,公差為2的等差數(shù)列,求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出;
(2)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.
解答: 解:(1)設(shè)等比數(shù)列{an}的公比為q,
∵a32=6a6,且S1、2S2、3S3成等差數(shù)列.
(a1q2)2=6a1q5,4S2=S1+3S3
化為a1=6q,4(a1+a1q)=a1+3(a1+a1q+a1q2),
q=
1
3
,a1=2.
an=2×(
1
3
)n-1

(2)∵數(shù)列{bn-an}是一個(gè)首項(xiàng)為-6,公差為2的等差數(shù)列,
∴bn-an=-6+2(n-1)=2n-8,
bn=2×(
1
3
)n-1+2n-8

∴數(shù)列{bn}的前n項(xiàng)和Tn=
2[1-
1
3n
]
1-
1
3
+
n(-6+2n-8)
2

=3-
1
3n-1
+n2-7n.
點(diǎn)評(píng):本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1中,A1B1和平面AC的位置關(guān)系是
 
,與平面A1C1的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的實(shí)系數(shù)方程x2+ax+b=0有兩個(gè)根,一個(gè)根在區(qū)間(0,1)內(nèi),另一根在區(qū)間(1,3)內(nèi),記點(diǎn)(a,b)對(duì)應(yīng)的區(qū)域?yàn)镾.
(1)求區(qū)域S的面積;
(2)設(shè)z=2a-b,求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(0,1),F(xiàn)2(0,-1)分別為橢圓C1
y2
a2
+
x2
b2
=1 (a>b>0)
的上、下焦點(diǎn),拋物線C2的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為F1,點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF1|=
5
3

(1)求拋物線C2及橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=k(x+t),kt≠0交橢圓C1于A,B兩點(diǎn),若橢圓C1上存在點(diǎn)P滿足
OA
+
OB
OP
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,過(guò)點(diǎn)A做∠BAC的平分線交BC于D,證明:AB:BD=AC:CD (用正弦定理證)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二面角α-ΑΒ-β為60°,在平面β內(nèi)有一點(diǎn)P,它到棱AB的距離為2,則點(diǎn)P到平面α的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=log3x,x∈[1,3],則凼數(shù)y=[f(x)]2+2f(x)的值域?yàn)?div id="kppsniz" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列選項(xiàng)中不正確的是( 。
A、兩直線的斜率存在時(shí),它們垂直的等價(jià)條件是其斜率之積為-1
B、如果方程Ax+By+C=0表示的直線是y軸,那么系數(shù)A,B,C滿足A≠0,B=C=0
C、Ax+Bx+C=0和2Ax+2Bx+C+1=0表示兩條平行直線的等價(jià)條件是A2+B2≠0且C≠1
D、(x-y+5)+k(4x-5y-1)=0表示經(jīng)過(guò)直線x-y+5=0與4x-5y-1=0的交點(diǎn)的所有直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABC-A1B1C1是地面邊長(zhǎng)為2,高為
3
2
的正三棱柱,經(jīng)過(guò)AB的截面與上底面相交于PQ,設(shè)C1P=λC1A1(0<λ<1).
(1)證明:PQ∥A1B1;
(2)是否存在λ,使得平面CPQ⊥截面APQB?如果存在,求出λ的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案