【題目】某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術水平的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗知道,其次品率P與日產(chǎn)量x(萬件)之間大體滿足關系: (其中c為小于6的正常數(shù))(注:次品率=次品數(shù)/生產(chǎn)量,如P0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品),已知每生產(chǎn)1萬件合格的元件可以盈利2萬元,但每生產(chǎn)出1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.

(1)試將生產(chǎn)這種儀器的元件每天的盈利額T(萬元)表示為日產(chǎn)量x(萬件)的函數(shù);

(2)當日產(chǎn)量為多少時,可獲得最大利潤?

【答案】1T;

2)當時,日產(chǎn)量為c萬件時,可獲得最大利潤,當時,日產(chǎn)量為3萬件時,可獲得最大利潤

【解析】試題分析:()每天的贏利為T=日產(chǎn)量(x×正品率(1-P×2-日產(chǎn)量(x×次品率(P×1,根據(jù)分段函數(shù)分段研究,整理即可;

)利用函數(shù)的導數(shù)得出單調(diào)性,再求函數(shù)的最大值.

試題解析:()當時, ,

時,

綜上,日盈利額(萬元)與日產(chǎn)量(萬件)的函數(shù)關系為:

)由(1)知,當時,每天的盈利額為0

,

時,

當且僅當時取等號

,此時

時,由

函數(shù)上遞增, ,

綜上,若,則當日產(chǎn)量為3萬件時,可獲得最大利潤;

,則當日產(chǎn)量為萬件時,可獲得最大利潤.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】從萬州二中高二年級文科學生中隨機抽取60名學生,將其月考的政治成績(均為整數(shù))分成六段:后得到如下頻率分布直方圖.

(1)求分數(shù)在內(nèi)的頻率;

(2)用分層抽樣的方法在80分以上(含 80分)的學生中抽取一個容量為6的樣本, 從該樣本中任意選取2人,求其中恰有1 人的分數(shù)不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其函數(shù)圖象的相鄰兩條對稱軸之間的距離為.

1)求函數(shù)的解析式及對稱中心;

2)將函數(shù)的圖象向左平移個單位長度,再向上平移個單位長度得到函數(shù)的圖象,若關于的方程在區(qū)間上有兩個不相等的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點 分別是Δ 的邊 的中點,連接 .現(xiàn)將 沿 折疊至Δ 的位置,連接 .記平面 與平面 的交線為 ,二面角 大小為 .

(1)證明:
(2)證明:
(3)求平面 與平面 所成銳二面角大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 為等差數(shù)列 的前 項和,其中 ,且

(1)求常數(shù) 的值,并寫出 的通項公式;

(2)記 ,數(shù)列 的前 項和為 ,若對任意的 ,都有 ,求常數(shù) 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的兩個焦點分別為 , ,且經(jīng)過點 .
(Ⅰ)求橢圓 的標準方程;
(Ⅱ) 的頂點都在橢圓 上,其中 關于原點對稱,試問 能否為正三角形?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知以點 為圓心的圓與直線 相切,過點 的直線 與圓 相交于 兩點, 的中點, .
(1)求圓 的標準方程;
(2)求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,曲線C1的參數(shù)方程是 (θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程是ρ=2sinθ.
(Ⅰ) 求曲線C1與C2交點的平面直角坐標;
(Ⅱ) 點A,B分別在曲線C1 , C2上,當|AB|最大時,求△OAB的面積(O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】祖暅原理:“冪勢既同,則積不容異”,它是中國古代一個涉及幾何體體積問題,意思是兩個等高的幾何體,如在同高處的截面積恒相等,則體積相等,設A,B為兩個等高的幾何體,p:A,B的體積相等,q:A,B在同高處的截面積不恒相等,根據(jù)祖暅原理可知,q是-p的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案