【題目】祖暅原理:“冪勢既同,則積不容異”,它是中國古代一個涉及幾何體體積問題,意思是兩個等高的幾何體,如在同高處的截面積恒相等,則體積相等,設(shè)A,B為兩個等高的幾何體,p:A,B的體積相等,q:A,B在同高處的截面積不恒相等,根據(jù)祖暅原理可知,q是-p的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

【答案】B
【解析】 的體積相等, 在同高處的截面積相等,由于A、B體積相等,A、B在同高處的截面積不恒相等,譬如一個為柱體另一個為椎體,所以條件不充分;反之成立,條件是必要的,因此 的必要不充分條件.選B.
故答案為:B先將命題p進行否定,只否定條件不否定結(jié)論,然后再根據(jù)非p和q的包含關(guān)系,確定充分性和必要性。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線 過坐標原點 ,圓 的方程為
(1)當直線 的斜率為 時,求 與圓 相交所得的弦長;
(2)設(shè)直線 與圓 交于兩點 ,且 的中點,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù) ,若函數(shù) 在x=1處與直線 相切.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)求函數(shù) 上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知頂點在單位圓上的 中,角 的對邊分別為 ,且 .
(1)求 的值;
(2)若 ,求 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐 中,底面 為矩形, 的中點, 的中點, 中點.

(1)證明: 平面
(2)若平面 底面 , ,試在 上找一點 ,使 平面 ,并證明此結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:實數(shù)x滿足 ,其中 ;和命題q:實數(shù)x滿足 .
(1)若a=1且p∧q為真,求實數(shù)x的取值范圍;
(2)若-p是-q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠家舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當促銷費用為x萬元時,銷售量t萬件滿足t=5- (其中0 x a,a為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品t萬件還需投入成本(10+2t)萬元(不含促銷費用),產(chǎn)品的銷售價格定為5+ 萬元/萬件.
(1)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù);
(2)促銷費用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)若對 ,f(x) 恒成立,求a的取值范圍;
(2)已知常數(shù)a R,解關(guān)于x的不等式f(x) .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】長方體中,O是坐標原點,OA軸,OC軸,軸.EAB中點,F中點,OA=3,OC=4,=3,則F坐標為(

A. (3,2, B. (3,3,

C. (3,,2) D. (3,0,3)

查看答案和解析>>

同步練習冊答案