5.?dāng)?shù)列{an}中,a1=1,且an+1=2an+3×5n,求an

分析 由已知變形可得數(shù)列{an-5n}是以-4為首項(xiàng),以2為公比的等比數(shù)列,問題得以解決.

解答 解:∵an+1=2an+3×5n
∴an+1-5n+1=2(an-5n),
∵a1=1,
∴a1-5=-4,
∴數(shù)列{an-5n}是以-4為首項(xiàng),以2為公比的等比數(shù)列,
∴an-5n=-4×2n-1=-2n+1,
∴an=5n-2n+1

點(diǎn)評 本題考查了數(shù)列的遞推公式,考查了轉(zhuǎn)化能力和運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.平面直角坐標(biāo)系xOy中,拋物線y2=2x的焦點(diǎn)為F,設(shè)M是拋物線上的動(dòng)點(diǎn),則$\frac{{|{MO}|}}{{|{MF}|}}$的最大值是$\frac{2\sqrt{3}}{3}$,此時(shí)|MF|=$\frac{13}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合A={y|y=2x,x∈R},B={x|x2-1<0},則A∩B=( 。
A.(-1,1)B.(0,1)C.空集D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.對應(yīng)(1)(2)(3)的三個(gè)三視圖的幾何體分別為( 。
A.三棱臺、三棱柱、圓錐B.三棱臺、三棱錐、圓錐
C.三棱柱、正四棱錐、圓錐D.三棱柱、三棱臺、圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知角α的終邊過點(diǎn)P(3,4),則$cos(\frac{5π}{2}+α)$=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)在[0,1]上有意義,f(0)=f(1),對于任意x1,x2∈[0,1],都有|f(x1)-f(x2)|<|x1-x2|,求證:|f(x1)-f(x2)|<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知在直三棱柱ABC-A1B1C1中,AB=2$\sqrt{3}$,∠ACB=120°,AA1=4,則該三棱柱外接球的表面積為( 。
A.$\frac{16\sqrt{2}π}{3}$B.64$\sqrt{2}$πC.32πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知4件產(chǎn)品中僅有1件次品,現(xiàn)逐一檢測,直至確定出次品為止,記檢測的次數(shù)為ξ,則E(ξ)=$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.我們把圓心在一條直線上,且相鄰兩圓彼此外切的一組圓叫做“串圓”,在如圖所示的“串圓”中,圓C1和圓C3的方程分別為:x2+y2=1和(x-4)2+(y-2)2=1,若直線ax+2by-2=0(a,b>0)始終平分圓C2的周長,則$\frac{1}{a}$+$\frac{2}$的最小值為( 。
A.1B.5C.4$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案