11.已知角α的終邊過點P(3,4),則$cos(\frac{5π}{2}+α)$=-$\frac{4}{5}$.

分析 由題意可得x,y,r,由任意角的三角函數(shù)的定義可得sinα,利用誘導(dǎo)公式化簡所求求得結(jié)果.

解答 解:∵由題意可得x=3,y=4,r=5,
由任意角的三角函數(shù)的定義可得sinα=$\frac{y}{r}$=$\frac{4}{5}$,
∴$cos(\frac{5π}{2}+α)$=-sinα=-$\frac{4}{5}$.
故答案為:-$\frac{4}{5}$.

點評 本題主要考查任意角的三角函數(shù)的定義,誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在四棱錐P-ABCD中,△PAD為正三角形,平面PAD⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB=2AD=4.
(Ⅰ)求證:平面PCD⊥平面PAD;
(Ⅱ)求三棱錐P-ABC的體積;
(Ⅲ)在棱PC上是否存在點E,使得BE∥平面PAD?若存在,請確定點E的位置并證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=($\frac{1}{3}$)x-log2x,設(shè)0<a<b<c,且滿足f(a)•f(b)•f(c)<0,若實數(shù)x0是方程f(x)=0的一個解,那么下列不等式中不可能成立的是( 。
A.x0<aB.x0>cC.x0<cD.x0>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知 a=($\frac{3}{5}$)${\;}^{-\frac{3}{5}}$,b=log${\;}_{\frac{1}{6}}$27,c=log2$\frac{1}{5}$則a,b,c的大小關(guān)系為( 。
A.a>b>cB.a>c>bC.c>b>aD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知菱形ABCD中,點A(2,2),B(5,3),對角線AC的方程為y=x,求頂點C、D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.?dāng)?shù)列{an}中,a1=1,且an+1=2an+3×5n,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.將函數(shù)y=cos2x的圖象向左平移$\frac{π}{4}$個單位長度,再向下平移1個單位長度,所得的圖象的對稱軸是( 。
A.x=kπ+$\frac{π}{2}$,k∈ZB.x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈ZC.x=2kπ+π,k∈ZD.x=kπ+$\frac{π}{4}$,k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,角A、B、C所對應(yīng)的邊分別為a,b,c,已知a=$\sqrt{3}$,b=$\sqrt{2}$,A=$\frac{π}{3}$,則B=$\frac{π}{4}$;S△ABC=$\frac{3+\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知隨機(jī)變量ξ服從正態(tài)分布N(μ,16),且P(ξ<-2)+P(ξ≤6)=1,則μ=( 。
A.-4B.4C.-2D.2

查看答案和解析>>

同步練習(xí)冊答案