18.6粒種子分種在甲、乙、丙3個坑內(nèi),每坑2粒,每粒種子發(fā)芽的概率為0.5,如果一個坑內(nèi)至少有1粒種子發(fā)芽,那么這個坑不需要補(bǔ)種,則3個坑中恰有1個坑不需要補(bǔ)種的概率為$\frac{9}{64}$(用數(shù)字作答).

分析 利用對立事件概率計算公式和n次獨(dú)立重復(fù)試驗中事件A恰好發(fā)生k次的概率計算公式求解.

解答 解:由題意每個坑不需要補(bǔ)種的概率均為1-0.52=$\frac{3}{4}$,
∴3個坑中恰有1個坑不需要補(bǔ)種的概率為p=${C}_{3}^{1}(\frac{3}{4})(\frac{1}{4})^{2}$=$\frac{9}{64}$.
故答案為:$\frac{9}{64}$.

點(diǎn)評 本題考查概率的求法,是中檔題,解題時要認(rèn)真審題,注意對立事件概率計算公式和n次獨(dú)立重復(fù)試驗中事件A恰好發(fā)生k次的概率計算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)集合A={m+2,2},集合B={m-1,2m},若A∩B={2},則A∪B={2,5,6}或{0,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若實數(shù)a,b∈{1,2},則在不等式x+y-3≥0表示的平面區(qū)域內(nèi)的點(diǎn)P(a,b)共有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.化簡cos222.5°-sin222.5°的值為(  )
A.$\frac{{\sqrt{3}}}{2}$B.1C.-$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)h(x)=2sin(2x+$\frac{π}{4}$)的圖象向右平移$\frac{π}{4}$個單位,再向上平移2個單位,得到函數(shù)f(x)的圖象,則函數(shù)f(x)的圖象( 。
A.關(guān)于直線x=0對稱B.關(guān)于直線x=π對稱C.關(guān)于點(diǎn)($\frac{π}{8}$,0)對稱D.關(guān)于點(diǎn)($\frac{π}{8}$,2)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=lg(1+$\frac{2x}{1-x}$)+1,若f(a)=2,則f(-a)的值是(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若0<α<$\frac{π}{2}$,cos($\frac{π}{3}$+α)=$\frac{1}{3}$,則cosα( 。
A.$\frac{2\sqrt{2}+\sqrt{3}}{6}$B.$\frac{2\sqrt{6}-1}{6}$C.$\frac{2\sqrt{6}+1}{6}$D.$\frac{2\sqrt{2}-\sqrt{3}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在等差數(shù)列{an}中,若a2+a4+a5+a6+a8=25,則a2+a8=( 。
A.8B.10C.12D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知隨機(jī)變量X服從正態(tài)分布N(0,σ2),且P(X>-2)=0.9,則P(0≤x≤2)=( 。
A.0.1B.0.6C.0.5D.0.4

查看答案和解析>>

同步練習(xí)冊答案