7.直線$3x+\sqrt{3}y-a=0$的傾斜角為(  )
A.30°B.60°C.120°D.150°

分析 求出直線的斜率,然后求解直線的傾斜角.

解答 解:直線$3x+\sqrt{3}y-a=0$的斜率為:$-\sqrt{3}$,傾斜角為α,$tanα=-\sqrt{3}$,
∴α=120°.
故選:C.

點(diǎn)評(píng) 本題考查直線的斜率與直線的傾斜角的關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若一系列函數(shù)的解析式相同,值域相同,但定義域不同,稱(chēng)這些函數(shù)為同族函數(shù).那么,函數(shù)的解析式為y=x2,值域?yàn)閧4,9}的同族函數(shù)共有( 。
A.7個(gè)B.8個(gè)C.9個(gè)D.10個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.不等式x2+mx+n<0的解集為{x|-1<x<2},則m,n的值分別為(  )
A.1,2B.1,-2C.-1,2D.-1,-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某投資商到一開(kāi)發(fā)區(qū)投資72萬(wàn)元建起一座蔬菜加工廠,第一年共支出12萬(wàn)元,以后每年支出增加4萬(wàn)元,從第一年起每年蔬菜銷(xiāo)售收入50萬(wàn)元.設(shè)f(n)表示前n年的純利潤(rùn)總和(f(n)=前n年的總收入-前n年的總支出-投資額).
(Ⅰ)該廠從第幾年開(kāi)始盈利?(盈利指的是純利潤(rùn)總和要大于0)
(Ⅱ)該投資商計(jì)劃在年平均純利潤(rùn)達(dá)到最大時(shí),以48萬(wàn)元出售該廠.問(wèn):需多少年后其年平均純利潤(rùn)才可達(dá)到最大,此時(shí)共獲利多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.下列四個(gè)說(shuō)法:
①一個(gè)命題的逆命題為真,則它的逆否命題一定為真;
②若k>0,則方程x2+2x-k=0有實(shí)數(shù)根;
③“x>2”是“$\frac{1}{x}$<$\frac{1}{2}$”的充分不必要條件;
④設(shè){an}是公比為q的等比數(shù)列,則“q>1”是“{an}為遞增數(shù)列”的充分而不必要條件.
其中真命題的序號(hào)是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.(1)計(jì)算:log3$\frac{\root{4}{27}}{3}$+lg25+lg4+${log_7}{7^2}$+log23•log34;
(2)設(shè)集合A={x|$\frac{1}{32}$≤2-x≤4},B={x|m-1<x<2m+1}.若A∪B=A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)A,B是橢圓$\frac{{x}^{2}}{2}$+y2=1上兩個(gè)相異的、不關(guān)于坐標(biāo)軸對(duì)稱(chēng)的點(diǎn).求線段AB的中垂線在y軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知四棱錐P-ABCD的底面ABCD為平行四邊形,M為線段PC上的點(diǎn),且滿(mǎn)足CM=$\frac{1}{2}$MP.若$\overrightarrow{CM}$=-$\frac{1}{3}$$\overrightarrow{AB}$+m$\overrightarrow{AD}$+n$\overrightarrow{AP}$,則m+n=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知角α的終邊經(jīng)過(guò)點(diǎn)M(π,-$\sqrt{2}$),則sin2α+cos2α=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案