【題目】若圓C:(x﹣5)2+(y+1)2=m(m>0)上有且只有一點(diǎn)到直線4x+3y﹣2=0的距離為1,則實(shí)數(shù)m的值為( )
A.4
B.16
C.4或16
D.2或4
【答案】A
【解析】解:∵圓C:(x﹣5)2+(y+1)2=m(m>0)
上有且只有一點(diǎn)到直線4x+3y﹣2=0的距離為1,
∴圓心(5,﹣1)到直線4x+3y﹣2=0的距離d=r+1,
∴d= = +1,
解得m=4.
所以答案是:A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線與圓的三種位置關(guān)系的相關(guān)知識(shí)可以得到問題的答案,需要掌握直線與圓有三種位置關(guān)系:無公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)y=f(x)的周期,并寫出其單調(diào)遞減區(qū)間;
(2)當(dāng) 時(shí),求f(x)的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.
(Ⅰ)求出f(5);
(Ⅱ)利用合情推理的“歸納推理思想”歸納出f(n+1)與f(n)的關(guān)系式,并根據(jù)你得到的關(guān)系式求f(n)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn+an=1,數(shù)列{bn}為等差數(shù)列,且b1+b2=b3=3.
(1)求Sn;
(2)求數(shù)列(anbn)的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)動(dòng)點(diǎn)P在棱長為1的正方體ABCD﹣A1B1C1D1的對(duì)角線BD1上,記 =λ.當(dāng)∠APC為銳角時(shí),λ的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間四邊形ABCD中,E , F分別為AB , AD上的點(diǎn),且 ,H , G分別為BC , CD的中點(diǎn),則( )
A.BD∥平面EFGH , 且四邊形EFGH是平行四邊形
B.EF∥平面BCD , 且四邊形EFGH是梯形
C.HG∥平面ABD , 且四邊形EFGH是平行四邊形
D.EH∥平面ADC , 且四邊形EFGH是梯形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù)的統(tǒng)計(jì)數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時(shí)間內(nèi)加工的合格零件平均數(shù)都為9.
(1)分別求出m,n的值;
(2)分別求出甲、乙兩組技工在單位時(shí)間內(nèi)加工的合格零件的方差s甲2和s乙2 , 并由此分析兩組技工的加工水平.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com