【題目】設(shè)函數(shù).
(1)若是的極大值點,求的取值范圍;
(2)當(dāng),時,方程(其中)有唯一實數(shù)解,求的值.
【答案】(1)(2)
【解析】
(1)由題意,求得函數(shù)的導(dǎo)數(shù)得到,分類討論得到函數(shù)的單調(diào)性和極值,即可求解實數(shù)的取值范圍;
(2)因為方程有唯一實數(shù)解,即有唯一實數(shù)解,設(shè),利用導(dǎo)數(shù),令,得,由此入手即可求解實數(shù)m的值.
(1)由題意,函數(shù)的定義域為,則導(dǎo)數(shù)為
由,得,∴
①若,由,得.
當(dāng)時,,此時單調(diào)遞增;
當(dāng)時,,此時單調(diào)遞減.
所以是的極大值點
②若,由,得,或.
因為是的極大值點,所以,解得
綜合①②:的取值范圍是
(2)因為方程有唯一實數(shù)解,所以有唯一實數(shù)解
設(shè),則,
令,即.
因為,,所以(舍去),
當(dāng)時,,在上單調(diào)遞減,
當(dāng)時,,在單調(diào)遞增
當(dāng)時,,取最小值
則,即,
所以,因為,所以(*)
設(shè)函數(shù),
因為當(dāng)時,是增函數(shù),所以至多有一解
因為,所以方程(*)的解為,即,解得
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)常數(shù),函數(shù)
(1)當(dāng)時,判斷在上單調(diào)性,并加以證明;
(2)當(dāng)時,研究的奇偶性,并說明理由;
(3)當(dāng)時,若存在區(qū)間使得在上的值域為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別為雙曲線的左、右焦點,以為直徑的圓與雙曲線在第一象限和第三象限的交點分別為,,設(shè)四邊形的周長為,面積為,且滿足,則該雙曲線的離心率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、、,對于給定的正整數(shù),記,.若對任意的正整數(shù)滿足:,且是等差數(shù)列,則稱數(shù)列為“”數(shù)列.
(1)若數(shù)列的前項和為,證明:為數(shù)列;
(2)若數(shù)列為數(shù)列,且,求數(shù)列的通項公式;
(3)若數(shù)列為數(shù)列,證明:是等差數(shù)列 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某書店為了了解銷售單價(單位:元)在]內(nèi)的圖書銷售情況,從2018年上半年已經(jīng)銷售的圖書中隨機抽取100本,獲得的所有樣本數(shù)據(jù)按照,,,,,分成6組,制成如圖所示的頻率分布直方圖,已知樣本中銷售單價在內(nèi)的圖書數(shù)是銷售單價在內(nèi)的圖書數(shù)的2倍.
(1)求出與,再根據(jù)頻率分布直方圖估計這100本圖書銷售單價的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)用分層抽樣的方法從銷售單價在[8,20]內(nèi)的圖書中共抽取40本,求單價在6組樣本數(shù)據(jù)中的圖書銷售的數(shù)量;
(3)從(2)中抽取且價格低于12元的書中任取2本,求這2本書價格都不低于10元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率,橢圓上的點到左焦點的距離的最大值為3.
(1)求橢圓的方程;
(2)求橢圓的外切矩形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自由購是通過自助結(jié)算方式購物的一種形式.某大型超市為調(diào)查顧客使用自由購的情況,隨機抽取了100人,統(tǒng)計結(jié)果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人數(shù) | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數(shù) | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)現(xiàn)隨機抽取1名顧客,試估計該顧客年齡在且未使用自由購的概率;
(Ⅱ)從被抽取的年齡在使用自由購的顧客中,隨機抽取3人進一步了解情況,用表示這3人中年齡在的人數(shù),求隨機變量的分布列及數(shù)學(xué)期望;
(Ⅲ)為鼓勵顧客使用自由購,該超市擬對使用自由購的顧客贈送1個環(huán)保購物袋.若某日該超市預(yù)計有5000人購物,試估計該超市當(dāng)天至少應(yīng)準備多少個環(huán)保購物袋.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)個紅包,每個紅包金額為元,.已知在每輪游戲中所產(chǎn)生的個紅包金額的頻率分布直方圖如圖所示.
(1)求的值,并根據(jù)頻率分布直方圖,估計紅包金額的眾數(shù);
(2)以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個紅包,其中金額在的紅包個數(shù)為,求的分布列和期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com