【題目】某電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了名觀眾進行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于分鐘的觀眾稱為體育迷.

(1)若日均收看該體育節(jié)目時間在內(nèi)的觀眾中有兩名女性,現(xiàn)從日均收看時間在內(nèi)的觀眾中抽取兩名進行調(diào)查,求這兩名觀眾恰好一男一女的概率;

(2)若抽取人中有女性人,其中女體育迷有人,完成答題卡中的列聯(lián)表并判斷能否在犯錯概率不超過的前提下認為是體育迷與性別有關(guān)系嗎?

附表及公式:

.

【答案】(1) .

(2) 不能在犯錯概率不超過的前提下認為是體育迷與性別有關(guān)系.

【解析】分析:(1)首先從圖中可以得到日均收看時間在內(nèi)的觀眾有名,分析得出從中抽兩名觀眾的情況對應(yīng)的基本事件并寫出,把滿足條件的基本事件找出來并數(shù)出個數(shù),之后利用公式求得結(jié)果;

(2)根據(jù)題意列出列聯(lián)表,應(yīng)用公式求得觀測值與臨界值比較大小,從而求得結(jié)果.

詳解:(1)由圖可得,日均收看時間在內(nèi)的觀眾有名,

則其中有名男性,名女性,記名男性為,,名女性為,.

從中抽取兩名觀眾的情況有,,,,,, 種.

其中恰好一男一女的情況有種,所以所求概率.

(2)由題意得如下列聯(lián)表:

非體育迷

體育迷

合計

合計

的觀測值

故不能在犯錯概率不超過的前提下認為是體育迷與性別有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】張三同學(xué)從每年生日時對自己的身高測量后記錄如表:

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

(1)求身高關(guān)于年齡的線性回歸方程;(可能會用到的數(shù)據(jù):(cm))

(2)利用(1)中的線性回歸方程,分析張三同學(xué)歲起到歲身高的變化情況,如 歲之前都符合這一變化,請預(yù)測張三同學(xué) 歲時的身高。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)若,函數(shù)的最大值為,最小值為,求的值;

(2)當(dāng)時,函數(shù)的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 與雙曲線 的離心率相同,且雙曲線C2的左、右焦點分別為F1 , F2 , M是雙曲線C2一條漸近線上的某一點,且OM⊥MF2 , ,則雙曲線C2的實軸長為(
A.4
B.
C.8
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,他在所著的《數(shù)學(xué)九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為4,2,則輸出v的值為(
A.66
B.33
C.16
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個港口,相鄰兩次高潮發(fā)生時間相距,低潮時水的深度為,高潮時為,一次高潮發(fā)生在10月10日4:00,每天漲潮落潮時,水的深度與時間近似滿足關(guān)系式.

(1)若從10月10日0:00開始計算時間,選用一個三角函數(shù)來近似描述該港口的水深和時間之間的函數(shù)關(guān)系.

(2)10月10日17:00該港口水深約為多少?(精確到

(3)10月10日這一天該港口共有多長時間水深低于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)給出以下四個命題:

①已知中,角A,B,C的對邊為a,b,c,當(dāng),時,滿足條件的三角形共有1個;

②已知中,角A,B,C的對邊為a,b,c,若三角形,這個三角形的最大角是;

③設(shè)是兩條不同的直線,,是兩個不同的平面,若,則;

④設(shè)是兩條不同的直線,,是兩個不同的平面,若,,則

其中正確的序號是__________(寫出所有正確說法的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義域為的奇函數(shù).

(1)求實數(shù)的值;

(2)若,不等式上恒成立,求實數(shù)的取值范圍;

(3)若 上最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表:

(1)畫出散點圖;

(2)根據(jù)如下的參考公式與參考數(shù)據(jù),求利潤額y與銷售額x之間的線性回歸方程;

(3)若該公司還有一個零售店某月銷售額為10千萬元,試估計它的利潤額是多少?

(參考公式:,其中:

查看答案和解析>>

同步練習(xí)冊答案