【題目】某搜索引擎廣告按照付費價格對搜索結果進行排名,點擊一次付費價格排名越靠前,被點擊的次數(shù)也可能會提高,已知某關鍵詞被甲、乙等多個公司競爭,其中甲、乙付費情況與每小時點擊量結果繪制成如下的折線圖.
(1)若甲公司計劃從這10次競價中隨機抽取3次競價進行調研,其中每小時點擊次數(shù)超過7次的競價抽取次數(shù)記為,求的分布列與數(shù)學期望;
(2)若把乙公司設置的每次點擊價格為x,每小時點擊次數(shù)為,則點近似在一條直線附近.試根據(jù)前5次價格與每小時點擊次數(shù)的關系,求y關于x的回歸直線.(附:回歸方程系數(shù)公式:).
【答案】(1)詳見解析(2)
【解析】
(1)根據(jù)折線圖,甲公司每小時點擊次數(shù)為9,5,7,8,7,6,8,6,7,7,的取值可能為0,1,2,3,再求出相應的概率,寫出分布列求期望.
(2)根據(jù)折線圖列出x,y的數(shù)據(jù),求得,代入公式求解.
(1)由題圖可知,甲公司每小時點擊次數(shù)為9,5,7,8,7,6,8,6,7,7,
由條件可知,的取值可能為0,1,2,3,且
,
所以,的分布列為
0 | 1 | 2 | 3 | |
的數(shù)學期望為.
(2)根據(jù)折線圖可得數(shù)據(jù)如下:
點擊次數(shù)y | 2 | 4 | 6 | 8 | 7 |
點擊價格x | 1 | 2 | 3 | 4 | 5 |
則,
則,
所求回歸直線方程為:.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,點E在AB上,AE=2EB=2,且DE⊥AB.以DE為折痕把△ADE折起,使點A到達點F的位置,且∠FEB=60°.
(1)求證:平面BFC⊥平面BCDE;
(2)若直線DF與平面BCDE所成角的正切值為,求二面角E﹣DF﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為,(t為參數(shù)),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C1:ρ=2cosθ,.
(1)求C1與C2交點的直角坐標;
(2)若直線l與曲線C1,C2分別相交于異于原點的點M,N,求|MN|的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓與軸相切,且與圓:外切;
(1)求動圓圓心的軌跡的方程;
(2)若直線過定點,且與軌跡交于、兩點,與圓交于、兩點,若點到直線的距離為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為實常數(shù).
(1)若存在,使得在區(qū)間內單調遞減,求的取值范圍;
(2)當時,設直線與函數(shù)的圖象相交于不同的兩點,,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】邊長為的等邊三角形內任一點到三邊距離之和為定值,則這個定值為;推廣到空間,棱長為的正四面體內任一點到各面距離之和為___________________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】今有6個人組成的旅游團,包括4個大人,2個小孩,去廬山旅游,準備同時乘纜車觀光,現(xiàn)有三輛不同的纜車可供選擇,每輛纜車最多可乘3人,為了安全起見,小孩乘纜車必須要大人陪同,則不同的乘車方式有_____種.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是國家統(tǒng)計局公布的2013-2018年入境游客(單位:萬人次)的變化情況,則下列結論錯誤的是( )
A.2014年我國入境游客萬人次最少
B.后4年我國入境游客萬人次呈逐漸增加趨勢
C.這6年我國入境游客萬人次的中位數(shù)大于13340萬人次
D.前3年我國入境游客萬人次數(shù)據(jù)的方差小于后3年我國入境游客萬人次數(shù)據(jù)的方差
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com