精英家教網 > 高中數學 > 題目詳情
函數y=ax3+bx2取得極大值和極小值時的x的值分別為0和
1
3
,則(  )
A、a-2b=0
B、2a-b=0
C、2a+b=0
D、a+2b=0
考點:函數在某點取得極值的條件
專題:導數的綜合應用
分析:由函數極值的性質可知,極值點處的導數為零,且左右兩側導數異號,據此可以列出關于a,b的方程(組),再進行判斷.
解答:解:設f(x)=ax3+bx2(a≠0),
則f′(x)=3ax2+2bx,
由已知得
f′(0)=0
f′(
1
3
)=0
且a>0,即3a(
1
3
)2+2b(
1
3
)=0

化簡得a+2b=0.
故選D
點評:可導函數在其極值點處的導數為零,且左右兩側的導數值異號,有些學生會忽視導數異號這一條件.在解答題中,在利用導數為零列方程求出待定字母的值后,一般會對極值點異側的導數異號這一條件進行驗證.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=ex,如果x1,x2∈R,且x1≠x2,下列關于f(x)的性質:
①(x1-x2)[f(x1)-f(x2)]>0;
②y=f(x)不存在反函數;
f(x1)+f(x2)<2f(
x1+x2
2
)

④方程f(x)=x2在(0,+∞)上沒有實數根,其中正確的是(  )
A、①②B、①④C、①③D、③④

查看答案和解析>>

科目:高中數學 來源: 題型:

設F1,F(xiàn)2分別是橢圓E:
x2
4
+
y2
3
=1的左,右焦點,過F1的直線l與E相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數列,則|AB|=( 。
A、
10
3
B、3
C、
8
3
D、2

查看答案和解析>>

科目:高中數學 來源: 題型:

若拋物線y2=2px(p>0)與直線x-y-1=0相交于A,B兩點,且
OA
OB
=-1,則p=(  )
A、1B、2C、4D、8

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列函數:
①f(x)=x 
1
2
;
②f(x)=2x;
③f(x)=log2x;
④f(x)=sinx.
則滿足關系式f′(
1
2
)>f(
3
2
)-f(
1
2
)>f′(
3
2
)的函數的序號是( 。
A、①③B、②④
C、①③④D、②③④

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}中的兩項a2,a2014是函數f(x)=
1
3
x3-3x2+ax(a為常數)的極值點,且a1008+a1009<0,則使{an}的前n項和Sn取得最大值的n為( 。
A、1008
B、1009
C、1008,1009
D、2014

查看答案和解析>>

科目:高中數學 來源: 題型:

某高!督y(tǒng)計》課程的教師隨機給出了選該課程的一些情況,具體數據如下:
非統(tǒng)計專業(yè)統(tǒng)計專業(yè)
1310
720
為了判斷選修統(tǒng)計專業(yè)是否與性別有關,根據表中數據,得K2≈4.844,所以可以判定選修統(tǒng)計專業(yè)與性別有關.那么這種判斷出錯的可能性為(  )
A、5%B、95%
C、1%D、99%

查看答案和解析>>

科目:高中數學 來源: 題型:

有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內所有直線;已知直線b?平面α,直線a?平面α,直線b∥平面α,則直線b∥直線α”的結論顯然是錯誤的,這是因為
 

①大前提錯誤    
②小前提錯誤      
③推理形式錯誤       
④非以上錯誤.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)=|x+2|+|x-3|的最小值為n,則二項式(x2+
2
x
n的展開式中的常數項是( 。
A、第3項B、第4項
C、第5項D、第6項

查看答案和解析>>

同步練習冊答案