函數(shù)f(x)=log
13
(5-4x-x2)的單調(diào)減區(qū)間為
 
分析:根據(jù)已知中函數(shù)f(x)=log
1
3
(5-4x-x2)的解析式,我們先根據(jù)對數(shù)的真數(shù)必須大于0,求出函數(shù)的定義域,然后結(jié)合對數(shù)函數(shù)的單調(diào)性和二次函數(shù)的單調(diào)性,根據(jù)復(fù)合函數(shù)“同增異減”的原則,求出函數(shù)f(x)=log
1
3
(5-4x-x2)的單調(diào)減區(qū)間.
解答:解:要使函數(shù)f(x)=log
1
3
(5-4x-x2)的解析式有意義
自變量x須滿足x∈(-5,1)
∵函數(shù)y=5-4x-x2在區(qū)間(-5,-2)上單調(diào)遞增
函數(shù)y=log
1
3
x在其定義域上單調(diào)遞減
故在區(qū)間(-5,-2)上函數(shù)f(x)=log
1
3
(5-4x-x2)單調(diào)遞減
故答案為:(-5,-2)
點評:本題考查的知識點是對數(shù)函數(shù)的單調(diào)區(qū)間,二次函數(shù)的單調(diào)性及復(fù)合函數(shù)的單調(diào)性,其中本題中易忽略對數(shù)函數(shù)的定義域,而錯解為(-∞,-2).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、設(shè)函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數(shù),則實數(shù)a的范圍是( 。
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當x∈[3,4]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有三個命題:“①0<
1
2
<1.②函數(shù)f(x)=log 
1
2
x是減函數(shù).③當0<a<1時,函數(shù)f(x)=logax是減函數(shù)”.當它們構(gòu)成三段論時,其“小前提”是
(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•茂名二模)設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=log 
1
2
x為(0,+∞)上的高調(diào)函數(shù);
②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
③如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);
其中正確的命題的個數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案