分析 (1)根據(jù)極坐標與直角坐標的對應(yīng)關(guān)系得出直線l的直角坐標方程,用x,y表示出cosφ,sinφ利用cos2φ+sin2φ=1消參數(shù)得到曲線C的普通方程;
(2)求出圓心到直線l的距離,利用垂徑定理求出弦長.
解答 解:(1)∵ρcosθ-ρsinθ-1=0,∴直線l的直角坐標方程為x-y-1=0,
∵$\left\{\begin{array}{l}{x=1+2sinφ}\\{y=-1+2cosφ}\end{array}\right.$,∴sinφ=$\frac{x-1}{2}$,cosφ=$\frac{y+1}{2}$,
∴曲線C的普通方程為($\frac{x-1}{2}$)2+($\frac{y+1}{2}$)2=1,即(x-1)2+(y+1)2=4.
(2)由(1)知曲線C表示圓心為C(1,-1)半徑為2的圓,
圓心C到直線l的距離d=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$<2,故直線l與曲線C相交,
直線l被曲線C截得的弦長為2$\sqrt{{2}^{2}-(\frac{\sqrt{2}}{2})^{2}}$=$\sqrt{14}$.
點評 本題考查了極坐標方程,參數(shù)方程與普通方程的轉(zhuǎn)化,直線與圓的位置關(guān)系,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com