已知a、b、c都為正數(shù),且不全相等,求證:

 

【答案】

見解析

【解析】

試題分析: ∵a,b,c∈R+

>0,

>0,

>0

又上述三個(gè)等式中等號(hào)不能同時(shí)成立

成立. lg()>lgabc

考點(diǎn) :本題主要考查對(duì)數(shù)運(yùn)算法則,基本不等式的應(yīng)用。

點(diǎn)評(píng):綜合法,從已知出發(fā),利用不等式性質(zhì)及對(duì)數(shù)運(yùn)算法則,逐步推導(dǎo)出求證式子。常見題型。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB的中點(diǎn).
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對(duì)應(yīng)的一個(gè)特征向量為
1
-4
,點(diǎn)P(2,-1)在矩陣A對(duì)應(yīng)的變換下得到點(diǎn)P′(5,1),求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=
2
,曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù)),求曲線C截直線l所得的弦長(zhǎng).
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c為都大于1的不全相等的正實(shí)數(shù),求證:
b2c2
a2
+
c2a2
b2
+
a2b2
c2
>ab+bc+ac

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)已知a,b,c為實(shí)數(shù),證明a,b,c均為正整數(shù)的充要條件是數(shù)學(xué)公式
(2)已知方程x3+px2+qx+r=0的三根α,β,γ都是實(shí)數(shù),證明α,β,γ是一個(gè)三角形的三邊的充要條件是數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省鹽城市東臺(tái)一中、時(shí)堰中學(xué)、唐洋中學(xué)高三(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB的中點(diǎn).
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對(duì)應(yīng)的一個(gè)特征向量為,點(diǎn)P(2,-1)在矩陣A對(duì)應(yīng)的變換下得到點(diǎn)P′(5,1),求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為,曲線C的參數(shù)方程為(α為參數(shù)),求曲線C截直線l所得的弦長(zhǎng).
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:1965年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(解析版) 題型:解答題

(1)已知a,b,c為實(shí)數(shù),證明a,b,c均為正整數(shù)的充要條件是;
(2)已知方程x3+px2+qx+r=0的三根α,β,γ都是實(shí)數(shù),證明α,β,γ是一個(gè)三角形的三邊的充要條件是

查看答案和解析>>

同步練習(xí)冊(cè)答案