已知函數(shù).
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.
(1)f(x)的最小正周期期T=,單調(diào)增區(qū)間為k∈Z);(2)列表:
x | 0 | π | ||||
2x+ | π | 2π | ||||
f(x) | 2 | 0 | -2 | 0 |
描點(diǎn)連線得圖象,如圖所示.
【解析】
試題分析:(1)先利用三角恒等變換公式對(duì)函數(shù)的解析式進(jìn)行化簡(jiǎn),用二倍角公式和兩個(gè)角的和的正弦公式,再根據(jù)化簡(jiǎn)后的解析式求三角函數(shù)的周期;(2)在所給的區(qū)間上找出函數(shù)值域的幾個(gè)特殊點(diǎn):最大值和最小值點(diǎn),再列出表格,在坐標(biāo)系中描出點(diǎn)畫出函數(shù)圖像.
試題解析: (1)f(x)=(1-2sin2x)+sin 2x=sin 2x+ cos 2x=2sin(2x+),
所以f(x)的最小正周期T=.
由2kπ-<2x+<2kπ+得<2x+<
所以f(x)的單調(diào)增區(qū)間為(k∈Z).
(2)列表:
x | 0 | π | ||||
2x+ | π | 2π | ||||
f(x) | 2 | 0 | -2 | 0 |
描點(diǎn)連線得圖象,如圖所示.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用;五點(diǎn)法作圖函數(shù)的圖像;函數(shù)的圖像變換.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆陜西南鄭中學(xué)高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)已知函數(shù)。
(1)若曲線在點(diǎn)處的切線與直線垂直,求實(shí)數(shù)的值;
(2)若恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆陜西南鄭中學(xué)高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知的值如表所示:如果與呈線性相關(guān)且回歸直線方程為,則
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆重慶市高三9月月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
若下面的程序框圖輸出的是,則①應(yīng)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016屆遼寧省鞍山市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題
已知a,b是平面內(nèi)兩個(gè)互相垂直的單位向量,若向量c滿足(a-c)·(b-c)=0,則|c|的最大值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016屆遼寧省鞍山市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
若|a|=2sin 15°,|b|=4cos 15°,a與b的夾角為30°,則a·b的值是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016屆福建省高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù),用秦九韶算法計(jì)算__________;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016屆湖北省荊門市高一下學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在直三棱柱中,,且.
(1)求證:平面⊥平面;
(2)若分別為是和的中點(diǎn),求證:‖平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com