設(shè)α,β為兩個(gè)不重合的平面,m,n是兩條不重合的直線,給出下列四個(gè)命題:
①若m?α,n?α,m∥β,n∥β,則α∥β;
②若n?α,m?β,α與β相交且不垂直,則n與m不垂直;
③若α⊥β,α∩β=m,m⊥n,則n⊥β;
④若m∥n,n⊥α,α∥β,則m⊥β.其中所有真命題的序號(hào)是   
【答案】分析:①若m?α,n?α,m∥β,n∥β,則α∥β,由面面平行的判定定理判斷;
②若n?α,m?β,α與β相交且不垂直,則n與m不垂直,由線線的位置關(guān)系判斷;
③若α⊥β,α∩β=m,m⊥n,則n⊥β,由線面垂直的條件進(jìn)行判斷;
④若m∥n,n⊥α,α∥β,則m⊥β,由線面垂直的條件進(jìn)行判斷.
解答:解:①若m?α,n?α,m∥β,n∥β,則α∥β,是一個(gè)錯(cuò)誤命題,因?yàn)閙,n不一定相交;
②若n?α,m?β,α與β相交且不垂直,則n與m不垂直,是錯(cuò)誤命題,因?yàn)閮蓚(gè)不垂直的平面中也存在互相垂直的兩條直線;
③若α⊥β,α∩β=m,m⊥n,則n⊥β,是錯(cuò)誤命題,因?yàn)閷?duì)比面面垂直的性質(zhì)定理知,少了一個(gè)條件即n?α;
④若m∥n,n⊥α,α∥β,則m⊥β是一個(gè)正確命題,因?yàn)閮蓷l平行線中的一條垂直于一個(gè)平面,則它也垂直于另一個(gè)平面,再有兩個(gè)平行平面中的一個(gè)平面與一條直線垂直,則另一個(gè)平面也與這條直線垂直.
故答案為④
點(diǎn)評(píng):本題考查平面與平面之間的位置關(guān)系,解題的關(guān)鍵是有著較好的空間想像能力以及對(duì)命題相關(guān)的定義與定理掌握得比較熟練.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若a∥b,l⊥a,則l⊥b;②若m⊥a,n⊥a,m∥b,n∥b,則a∥b;③若l∥a,l⊥b,則a⊥b;④若m、n是異面直線,m∥a,n∥a,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高一下學(xué)期期末考試數(shù)學(xué)卷 題型:填空題

設(shè)ab為兩個(gè)不重合的平面,lm,n為兩兩不重合的直線,給出下列四個(gè)命題:

①若ablÌa,則lb

②若mÌa,nÌa,mbnb,則ab; 

③若la,lb,則ab;

④若mn是異面直線,ma,na,且lm,ln,則la.

其中真命題的序號(hào)是____★____

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:南京模擬 題型:單選題

設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若ab,l⊥a,則l⊥b;②若m⊥a,n⊥a,mb,nb,則ab;③若la,l⊥b,則a⊥b;④若m、n是異面直線,ma,na,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是(  )
A.①③④B.①②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都市石室中學(xué)高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若a∥b,l⊥a,則l⊥b;②若m⊥a,n⊥a,m∥b,n∥b,則a∥b;③若l∥a,l⊥b,則a⊥b;④若m、n是異面直線,m∥a,n∥a,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是( )
A.①③④
B.①②③
C.①③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年江蘇省南京市高三3月調(diào)研數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若a∥b,l⊥a,則l⊥b;②若m⊥a,n⊥a,m∥b,n∥b,則a∥b;③若l∥a,l⊥b,則a⊥b;④若m、n是異面直線,m∥a,n∥a,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是( )
A.①③④
B.①②③
C.①③
D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案