【題目】甲、乙、丙三支球隊(duì)進(jìn)行某種比賽,其中兩隊(duì)比賽,另一隊(duì)當(dāng)裁判,每局比賽結(jié)束時(shí),負(fù)方在下一局當(dāng)裁判.設(shè)各局比賽雙方獲勝的概率均為 ,各局比賽結(jié)果相互獨(dú)立,且沒(méi)有平局,根據(jù)抽簽結(jié)果第一局甲隊(duì)當(dāng)裁判
(1)求第四局甲隊(duì)當(dāng)裁判的概率;
(2)用X表示前四局中乙隊(duì)當(dāng)裁判的次數(shù),求X的分布列和數(shù)學(xué)期望.

【答案】
(1)解:第一局無(wú)論誰(shuí)輸,第二局都由甲隊(duì)上場(chǎng),第四局甲隊(duì)當(dāng)裁判(記為事件A),

第三局甲隊(duì)參加比賽(不能當(dāng)裁判)且輸?shù)簦ㄓ洖槭录嗀2),可知第二局甲隊(duì)參加比賽且獲勝(記為事件A1),

∴A1和A2都發(fā)生,A才發(fā)生,即P(A)=P(A1A2)=P(A1)P(A2)=


(2)解:由題意S的所有可能取值為0,1,2,

記“第三局乙丙比賽,乙勝丙”為事件A3,“第一局比賽,乙勝丙”為事件B1

“第二局乙甲比賽,乙勝甲”為事件B2,“第三局比賽乙參加比賽,乙負(fù)”為事件B3,

∴P(X=0)=P(B1B2A3)=P(B1)P(B2)P(A3)= ,

P(X=2)=P( )=P( )P(B3)= ,

P(X=1)=1﹣P(X=0)﹣P(X=2)= ,

∴X的分布列為:

X

0

1

2

P

∴E(X)= =


【解析】(1)第一局無(wú)論誰(shuí)輸,第二局都由甲隊(duì)上場(chǎng),第四局甲隊(duì)當(dāng)裁判(記為事件A),第三局甲隊(duì)參加比賽(不能當(dāng)裁判)且輸?shù)簦ㄓ洖槭录嗀2),可知第二局甲隊(duì)參加比賽且獲勝(記為事件A1),A1和A2都發(fā)生,A才發(fā)生,由此能求出第四局甲隊(duì)當(dāng)裁判的概率.(2)由題意S的所有可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿足 ,Sn是{an}的前n項(xiàng)和,則S40=(
A.880
B.900
C.440
D.450

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用秦九韶算法判斷方程x5+x3+x2-1=0[0,2]上是否存在實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0且a≠1)的圖象過(guò)的(-2,16).

(1)求函數(shù)f(x)的解析式;

(2)若f(2m+5)<f(3m+3),求m的取值范圍.

【答案】(1)f(x)=; (2)m<2.

【解析】

(1)將代入可得,從而可得函數(shù)的解析式;(2)根據(jù)(1)中所求解析式判斷是實(shí)數(shù)集上的減函數(shù),不等式等價(jià)于,解不等式即可得結(jié)果.

(1)∵函數(shù)f(x)=ax(a>0且a≠1)的圖象過(guò)點(diǎn)(-2,16),

∴a-2=16

∴a=,即f(x)=,

(2)∵f(x)=為減函數(shù),f(2m+5)<f(3m+3),

∴2m+5>3m+3,

解得m<2.

【點(diǎn)睛】

本題主要考查了指數(shù)函數(shù)的解析式和指數(shù)函數(shù)單調(diào)性的應(yīng)用,意在考查綜合應(yīng)用所學(xué)知識(shí)解答問(wèn)題的能力,屬于基礎(chǔ)題.

型】解答
結(jié)束】
19

【題目】2017年APEC會(huì)議于11月10日至11日在越南峴港舉行,某研究機(jī)構(gòu)為了了解各年齡層對(duì)APEC會(huì)議的關(guān)注程度,隨機(jī)選取了100名年齡在[20,45]內(nèi)的市民舉行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分布為[20,25),[25.30),[30,35),[35,40),[40,45]).

(1)求選取的市民年齡在[30,35)內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再?gòu)闹羞x取2人參與APEC會(huì)議的宣傳活動(dòng),求參與宣傳活動(dòng)的市民中至少有一人的年齡在[35,40)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,,點(diǎn)在線段上.

(1)若中點(diǎn),證明:平面;

(2)當(dāng)時(shí),求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,ACBC,點(diǎn)D是AB的中點(diǎn).求證:

(1)ACBC1;

(2)AC1平面B1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了了解學(xué)生對(duì)消防知識(shí)的了解情況,從高一年級(jí)和高二年級(jí)各選取100名同學(xué)進(jìn)行消防知識(shí)競(jìng)賽.下圖(1)和下圖(2)分別是對(duì)高一年級(jí)和高二年級(jí)參加競(jìng)賽的學(xué)生成績(jī)按, , 分組,得到的頻率分布直方圖.

(1)請(qǐng)計(jì)算高一年級(jí)和高二年級(jí)成績(jī)小于60分的人數(shù);

(2)完成下面列聯(lián)表,并回答:有多大的把握可以認(rèn)為“學(xué)生所在的年級(jí)與消防常識(shí)的了解存在相關(guān)性”?

附:臨界值表及參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)fx)的對(duì)稱軸是x=-1,fx)在R上的最小值是0,且f(1)=4.

(1)求函數(shù)fx)的解析式;

(2)若gx)=(λ-1)fx-1)-λx-3在x∈[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,面積為的正方形中有一個(gè)不規(guī)則的圖形,可按下面方法估計(jì)的面積:在正方形中隨機(jī)投擲個(gè)點(diǎn),若個(gè)點(diǎn)中有個(gè)點(diǎn)落入中,則的面積的估計(jì)值為,假設(shè)正方形的邊長(zhǎng)為2 的面積為1,并向正方形中隨機(jī)投擲個(gè)點(diǎn),以表示落入中的點(diǎn)的數(shù)目.

I)求的均值;

II)求用以上方法估計(jì)的面積時(shí), 的面積的估計(jì)值與實(shí)際值之差在區(qū)間內(nèi)的概率.

附表:

查看答案和解析>>

同步練習(xí)冊(cè)答案