【題目】三位數(shù)中,如果百位數(shù)字、十位數(shù)字、個(gè)位數(shù)字剛好能構(gòu)成等差數(shù)列,則稱為“等差三位數(shù)”,例如:147,642,777,420等等.等差三位數(shù)的總個(gè)數(shù)為( )
A.32B.36C.40D.45
【答案】D
【解析】
由題意分公差為0,1,2,3,4,-1,-2,-3,-4九種情況,分別得出各三位數(shù)的個(gè)數(shù),運(yùn)用加法原理可得選項(xiàng).
由題意得若百位數(shù)字、十位數(shù)字、個(gè)位數(shù)字構(gòu)成公差為0的“等差三位數(shù)”,則只要各位數(shù)字不為零即可,有9個(gè);
若百位數(shù)字、十位數(shù)字個(gè)位數(shù)字構(gòu)成公差為1的“等差三位數(shù)”,則百位數(shù)字不大于7,有7個(gè);
若百位數(shù)字、十位數(shù)字、個(gè)位數(shù)字構(gòu)成公差為2的“等差三位數(shù)”,則百位數(shù)字不大于5,有5個(gè);
若百位數(shù)字十位數(shù)字個(gè)位數(shù)字構(gòu)成公差為3的“等差三位數(shù)”,則百位數(shù)字不大于3,有3個(gè);若百位數(shù)字、十位數(shù)字、個(gè)位數(shù)字構(gòu)成公差為4的“等差三位數(shù)”,則百位數(shù)字只能為1,有1個(gè);
若百位數(shù)字、十位數(shù)字、個(gè)位數(shù)字構(gòu)成公差為的“等差三位數(shù),則百位數(shù)字不小于2,有8個(gè);
若百位數(shù)字、十位數(shù)字、個(gè)位數(shù)字構(gòu)成公差為的“等差三位數(shù)”,則百位數(shù)字不小于4,有6個(gè);
若百位數(shù)字、十位數(shù)字、個(gè)位數(shù)字構(gòu)成公差為的“等差三位數(shù)”,則百位數(shù)字不小于6,有4個(gè);
若百位數(shù)字、十位數(shù)字個(gè)位數(shù)字構(gòu)成公差為的“等差三位數(shù)”,則百位數(shù)字不小于8有2個(gè).
綜上所述,“等差三位數(shù)”的總數(shù)為個(gè),
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)F是橢圓的左焦點(diǎn),過(guò)點(diǎn)F且斜率為正的直線與E相交于A、B兩點(diǎn),過(guò)點(diǎn)A、B分別作直線AM和BN滿足AM⊥l,BN⊥l,且直線AM、BN分別與x軸相交于M和N.試求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,設(shè)曲線與曲線的公共弦所在直線為l.
(1)在直角坐標(biāo)系下,求曲線與曲線的普通方程;
(2)若以坐標(biāo)原點(diǎn)為中心,直線l順時(shí)針方向旋轉(zhuǎn)后與曲線、曲線分別在第一象限交于A、B兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,已知橢圓:的離心率為,為橢圓上位于第一象限上的點(diǎn),為橢圓的上頂點(diǎn),直線與軸相交于點(diǎn),,的面積為6.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓有且只有一個(gè)公共點(diǎn),設(shè)橢圓的兩焦點(diǎn)到直線的距離分別是,,試問(wèn)是否為定值?若是,求出其值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓C:的離心率為,其右焦點(diǎn)到橢圓C外一點(diǎn)的距離為,不過(guò)原點(diǎn)O的直線l與橢圓C相交于A,B兩點(diǎn),且線段AB的長(zhǎng)度為2.
1求橢圓C的方程;
2求面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)的圖象為曲線,曲線在點(diǎn)的切線為(其中).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)證明:(i);
(ii).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1(﹣c,0),F2(c,0)分別為雙曲線1(a>0,b>0)的左、右焦點(diǎn),以坐標(biāo)原點(diǎn)O為圓心,c為半徑的圓與雙曲線在第二象限交于點(diǎn)P,若tan∠PF1F2,則該雙曲線的離心率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南北朝時(shí)期的數(shù)學(xué)家祖暅提出了計(jì)算幾何體體積的祖暅原理:“冪勢(shì)既同,則積不容異“.意思是兩個(gè)同高的幾何體,如果在等高處的截面積都相等,那么這兩個(gè)幾何體的體積相等.現(xiàn)有某幾何體和一個(gè)圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是半徑為3的圓的三分之一,則該幾何體的體積為( )
A.πB.πC.4D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】基于移動(dòng)互聯(lián)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國(guó),帶給人們新的出行體驗(yàn),某共享單車運(yùn)營(yíng)公司的市場(chǎng)研究人員為了解公司的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),設(shè)月份代碼為x,市場(chǎng)占有率為y(%),得結(jié)果如下表
年月 | 2019.11 | 2019.12 | 2020.1 | 2020.2 | 2020.3 | 2020.4 |
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 9 | 11 | 14 | 13 | 18 | 19 |
(1)觀察數(shù)據(jù),可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明(精確到0.001);
(2)求y關(guān)于x的線性回歸方程,并預(yù)測(cè)該公司2020年6月份的市場(chǎng)占有率;
(3)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購(gòu)一批單車投入市場(chǎng),現(xiàn)有采購(gòu)成本分別為1000元/輛和800元/輛的甲、乙兩款車型,報(bào)廢年限不相同.考慮到公司的經(jīng)濟(jì)效益,該公司決定先對(duì)這兩款單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命統(tǒng)計(jì)如下表:
報(bào)廢年限 車輛數(shù) 車型 | 1年 | 2年 | 3年 | 4年 | 總計(jì) |
甲款 | 10 | 40 | 30 | 20 | 100 |
乙款 | 15 | 35 | 40 | 10 | 100 |
經(jīng)測(cè)算,平均每輛單車每年可以為公司帶來(lái)收入500元,不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且用頻率估計(jì)每輛單車使用壽命的概率,以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù),如果你是該公司的負(fù)責(zé)人,你會(huì)選擇采購(gòu)哪款車型?
參考數(shù)據(jù):,,,.
參考公式,相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com