【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=2,an+1= Sn(n=1,2,3,…).
(1)證明:數(shù)列{ }是等比數(shù)列;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

【答案】
(1)證明:因?yàn),an+1=Sn+1﹣Sn= Sn,

所以 =2 ,又a1=2,

故數(shù)列{ }是等比數(shù)列,首項(xiàng)為2,公比為2的等比數(shù)列.


(2)解:由(1)得: =2n,即Sn=n2n

所以bn= = = =

故數(shù)列{bn}的前n項(xiàng)和Tn= + +…+ =1﹣ =


【解析】(1)an+1=Sn+1﹣Sn= Sn,整理為 =2 .即可證明.(2)由(1)得: =2n,即Sn=n2n.可得bn= = = = ,利用裂項(xiàng)求和方法即可得出.
【考點(diǎn)精析】利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)a的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD,底面ABCD為正方形,側(cè)面PAD為直角三角形,且PA=PD,面PAD⊥面ABCD,E、F分別為AB、PD的中點(diǎn).
(Ⅰ)求證:EF∥面PBC;
(Ⅱ)求證:AP⊥面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一半徑為4米的水輪如圖所示,水輪圓心O距離水面2米,已知水輪每60秒逆時(shí)針轉(zhuǎn)動(dòng)5圈,如果當(dāng)水輪上點(diǎn)P從水中浮現(xiàn)時(shí)(圖象P0點(diǎn))開始計(jì)算時(shí)間,且點(diǎn)P距離水面的高度f(t)(米)與時(shí)間t(秒)滿足函數(shù):f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|< ).
(1)求函數(shù)f(t)的解析式;
(2)點(diǎn)P第二次到達(dá)最高點(diǎn)要多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).
(1)求證:PO⊥平面ABCD;
(2)求異面直線PB與CD所成角的余弦值;
(3)線段AD上是否存在點(diǎn)Q,使得它到平面PCD的距離為 ?若存在,求出 的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面向量 滿足| |=1,| |=2.
(1)若 的夾角θ=120°,求| + |的值;
(2)若(k + )⊥(k ),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下莖葉圖記錄了甲、乙兩個(gè)籃球隊(duì)在3次不同比賽中的得分情況.乙隊(duì)記錄中有一個(gè)數(shù)字模糊,無法確認(rèn),假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并在圖中以m表示.那么在3次比賽中,乙隊(duì)平均得分超過甲隊(duì)平均得分的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,2AB=2AC=AA1 , 則異面直線BA1與B1C所成的角的余弦值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:存在x∈(﹣∞,1)使得x2﹣4x+m=0成立,命題q:方程 表示焦點(diǎn)在x軸上的橢圓.
(1)若p是真命題,求實(shí)數(shù)m的取值范圍;
(2)若p或q是假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為2的半圓有一內(nèi)接梯形ABCD,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上.若雙曲線以A、B為焦點(diǎn),且過C、D兩點(diǎn),則當(dāng)梯形ABCD的周長(zhǎng)最大時(shí),雙曲線的實(shí)軸長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案