(2013•福建)如圖,在正方形OABC中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)C的坐標(biāo)為(0,10),分別將線(xiàn)段OA和AB十等分,分點(diǎn)分別記為A1,A2,…,A9和B1,B2,…,B9,連接OBi,過(guò)Ai作x軸的垂線(xiàn)與OBi,交于點(diǎn)
P
 
i
(i∈N*,1≤i≤9)

(1)求證:點(diǎn)
P
 
i
(i∈N*,1≤i≤9)
都在同一條拋物線(xiàn)上,并求拋物線(xiàn)E的方程;
(2)過(guò)點(diǎn)C作直線(xiàn)l與拋物線(xiàn)E交于不同的兩點(diǎn)M,N,若△OCM與△OCN的面積之比為4:1,求直線(xiàn)l的方程.
分析:(I)由題意,求出過(guò)Ai(i∈N*,1≤i≤9)且與x軸垂直的直線(xiàn)方程為x=i,Bi的坐標(biāo)為(10,i),即可得到直線(xiàn)OBi的方程為y=
i
10
x
.聯(lián)立方程
x=i
y=
i
10
x
,即可得到Pi滿(mǎn)足的方程;
(II)由題意,設(shè)直線(xiàn)l的方程為y=kx+10,與拋物線(xiàn)的方程聯(lián)立得到一元二次方程,利用根與系數(shù)的關(guān)系,及利用面積公式S△OCM=S△OCN,可得|x1|=4|x2|.即x1=-4x2.聯(lián)立即可得到k,進(jìn)而得到直線(xiàn)方程.
解答:(I)證明:由題意,過(guò)Ai(i∈N*,1≤i≤9)且與x軸垂直的直線(xiàn)方程為x=i,Bi的坐標(biāo)為(10,i),
∴直線(xiàn)OBi的方程為y=
i
10
x

設(shè)Pi(x,y),由
x=i
y=
i
10
x
,解得y=
x2
10
,即x2=10y.
∴點(diǎn)
P
 
i
(i∈N*,1≤i≤9)
都在同一條拋物線(xiàn)上,拋物線(xiàn)E的方程為x2=10y.
(II)由題意,設(shè)直線(xiàn)l的方程為y=kx+10,
聯(lián)立
y=kx+10
x2=10y
消去y得到x2-10kx-100=0,
此時(shí)△>0,直線(xiàn)與拋物線(xiàn)恒有兩個(gè)不同的交點(diǎn),
設(shè)為M(x1,y1),N(x2,y2),則x1+x2=10k,x1x2=-100,
∵S△OCM=4S△OCN,∴|x1|=4|x2|.∴x1=-4x2
聯(lián)立
x1+x2=10k
x1x2=-100
x1=-4x2
,解得k=±
3
2

∴直線(xiàn)l的方程為y=±
3
2
x+10
.即為3x+2y-20=0或3x-2y+20=0.
點(diǎn)評(píng):本題主要考查了拋物線(xiàn)的性質(zhì)、直線(xiàn)與拋物線(xiàn)的位置關(guān)系、三角形的面積等基礎(chǔ)知識(shí),考查了推理能力、轉(zhuǎn)化與化歸方法、計(jì)算能力、數(shù)形結(jié)合的思想方法、函數(shù)與方程得思想方法、分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•福建)如圖,在△ABC中,已知點(diǎn)D在BC邊上,AD⊥AC,sin∠BAC=
2
2
3
,AB=3
2
,AD=3,則BD的長(zhǎng)為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•福建)如圖,在四棱柱P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.
(I)當(dāng)正視方向與向量
AD
的方向相同時(shí),畫(huà)出四棱錐P-ABCD的正視圖(要求標(biāo)出尺寸,并寫(xiě)出演算過(guò)程);
(II)若M為PA的中點(diǎn),求證:DM∥平面PBC;
(III)求三棱錐D-PBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•福建)如圖,在等腰直角△OPQ中,∠POQ=90°,OP=2
2
,點(diǎn)M在線(xiàn)段PQ上,
(Ⅰ)若OM=
5
,求PM的長(zhǎng);
(Ⅱ)若點(diǎn)N在線(xiàn)段MQ上,且∠MON=30°,問(wèn):當(dāng)∠POM取何值時(shí),△OMN的面積最?并求出面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•福建)如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)
(1)求證:CD⊥平面ADD1A1
(2)若直線(xiàn)AA1與平面AB1C所成角的正弦值為
67
,求k的值
(3)現(xiàn)將與四棱柱ABCD-A1B1C1D1形狀和大小完全相同的兩個(gè)四棱柱拼成一個(gè)新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問(wèn)共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為f(k),寫(xiě)出f(k)的解析式.(直接寫(xiě)出答案,不必說(shuō)明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案