【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)記,的導(dǎo)函數(shù),如果是函數(shù)的兩個零點,且滿足,證明:.

【答案】(1)見解析(2)見解析

【解析】分析:(1)取出函數(shù)的導(dǎo)數(shù),結(jié)合二次函數(shù)的性質(zhì),通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,即可;

(2)求出,令,則,根據(jù)函數(shù)的單調(diào)性證明即可

詳解:(1)的定義域為

.

設(shè),為二次函數(shù),對稱軸,且恒過點,

(i)當(dāng)時,,所以,上單調(diào)遞減;

(ii)當(dāng)時,

,可得.

時, .

當(dāng)時,,;時,,.所以上單調(diào)遞減;在上單調(diào)遞增.

當(dāng)時,,.

對任意,,恒成立,所以上單調(diào)遞減;

當(dāng)時,,.

當(dāng)時,,時,.

所以上單調(diào)遞減,在上單調(diào)遞增.

綜上,當(dāng)時,上單調(diào)遞減;在上單調(diào)遞增.

當(dāng)時, 上單調(diào)遞減.

當(dāng)時,上單調(diào)遞減;在上單調(diào)遞增.

(2),.

兩式相減,整理得,

所以

,

,

所以上單調(diào)遞減,故

,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)(0<≤10)與銷售價格(單位:萬元/輛)進行整理,得到如下的對應(yīng)數(shù)據(jù):

使用年數(shù)

2

4

6

8

10

售價

16

13

9.5

7

4.5

(Ⅰ)試求關(guān)于的回歸直線方程;

(附:回歸方程,

(Ⅱ)已知每輛該型號汽車的收購價格為萬元,根據(jù)(Ⅰ)中所求的回歸方程,

預(yù)測為何值時,小王銷售一輛該型號汽車所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)是奇函數(shù),求實數(shù)的值;

2)若關(guān)于的方程在區(qū)間上有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個截面,若截面為平行四邊形.

(1)求證:AB∥平面EFGH

(2)AB4CD6,求四邊形EFGH周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點是圓上一動點,點在線段上,點在半徑上,且滿足.

(1)當(dāng)在圓上運動時,求點的軌跡的方程

(2)設(shè)過點的直線與軌跡交于點不在軸上),垂直于的直線交于點,與軸交于點,若,求點橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點的中心(

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,,,且,EPD中點.

I)求證:平面ABCD;

II)求二面角B-AE-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)當(dāng)時,若函數(shù)處的切線與函數(shù)相切,求實數(shù)的值;

(2)當(dāng)時,記.證明:當(dāng)時,存在,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司共有60位員工,為提高員工的業(yè)務(wù)技術(shù)水平,公司擬聘請專業(yè)培訓(xùn)機構(gòu)進行培訓(xùn).培訓(xùn)的總費用由兩部分組成:一部分是給每位參加員工支付400元的培訓(xùn)材料費;另一部分是給培訓(xùn)機構(gòu)繳納的培訓(xùn)費.若參加培訓(xùn)的員工人數(shù)不超過30人,則每人收取培訓(xùn)費1000元;若參加培訓(xùn)的員工人數(shù)超過30人,則每超過1人,人均培訓(xùn)費減少20元.設(shè)公司參加培訓(xùn)的員工人數(shù)為x人,此次培訓(xùn)的總費用為y元.

(1)求出yx之間的函數(shù)關(guān)系式;

(2)請你預(yù)算:公司此次培訓(xùn)的總費用最多需要多少元?

查看答案和解析>>

同步練習(xí)冊答案