【題目】利用兩角和與差的正弦、余弦公式證明:
sinαcosβ=[sin(α+β)+sin(α﹣β)];
cosαsinβ=[sin(α+β)﹣sin(α﹣β)];
cosαsinβ=[cos(α+β)+cos(α﹣β)];
sinαcosβ=[cos(α+β)﹣cos(α﹣β)].

【答案】證明:∵sin(α+β)+sin(α﹣β)=sinαcosβ+cosαsinβ+sinαcosβ﹣cosαsinβ=2sinαcosβ,
∴sinαcosβ=[sin(α+β)+sin(α﹣β)].
同理可證,cosαsinβ=[sin(α+β)﹣sin(α﹣β)];
cosαsinβ=[cos(α+β)+cos(α﹣β)];
sinαcosβ=[cos(α+β)﹣cos(α﹣β)].
【解析】喲條件利用兩角和差的正弦公式、兩角和差的余弦公式,化簡(jiǎn)等式的右邊,再加以變形可得要證的等式成立。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角函數(shù)的積化和差公式的相關(guān)知識(shí),掌握三角函數(shù)的積化和差公式:;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=x+sin|x|,x∈[﹣π,π]的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了得到函數(shù)y=sin(2x﹣ ),x∈R的圖象,只需將函數(shù)y=sin2x,x∈R的圖象上所有的點(diǎn)(
A.向左平行移動(dòng) 個(gè)單位長(zhǎng)度
B.向右平行移動(dòng) 個(gè)單位長(zhǎng)度
C.向左平行移動(dòng) 個(gè)單位長(zhǎng)度
D.向右平行移動(dòng) 個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sin2x+sinxcosx+cos2x,x∈R. 求:
(1)f()的值;
(2)函數(shù)f(x)的最小值及相應(yīng)x值;
(3)函數(shù)f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1= ,an= (n≥2,n∈N*),設(shè)bn= ,
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)設(shè)Sn=|b1|+|b2|+…+|bn|(n∈N*),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列{an}中,a1+a3=10,d=3.令bn= ,數(shù)列{bn}的前n項(xiàng)和為Tn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)是否存在正整數(shù)m,n(1<m<n),使得T1 , Tm , Tn成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱的所有棱長(zhǎng)均為2,底面側(cè)面, , 的中點(diǎn), .

(1)證明: .

(2)若棱上一點(diǎn),滿足,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】程序框圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù):f(x)= ,f(x)=x4 , f(x)=2x , f(x)=x﹣ ,則可以輸出的函數(shù)是(
A.f(x)=
B.f(x)=x4
C.f(x)=2x
D.f(x)=x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=ax2﹣(a+1)x+1
(1)解關(guān)于x的不等式f(x)>0;
(2)若對(duì)任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案