若數(shù)列的前n項(xiàng)的和S n = n2-2n+ 1,則這個(gè)數(shù)列的前三項(xiàng)為 (    )

A  1,1,3       B  1,1,4       C  0,1,3        D  0,-1,4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是以d為公差的等差數(shù)列,{bn}數(shù)列是以q為公比的等比數(shù)列.
(Ⅰ)若數(shù)列的前n項(xiàng)和為Sn,且a1=b1=d=2,S3<a1003+5b2-2010,求整數(shù)q的值;
(Ⅱ)在(Ⅰ)的條件下,試問數(shù)列中是否存在一項(xiàng)bk,使得bk恰好可以表示為該數(shù)列中連續(xù)p(p∈N,p≥2)項(xiàng)的和?請說明理由;
(Ⅲ)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的約數(shù)),求證:數(shù)列{bn}中每一項(xiàng)都是數(shù)列{an}中的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們把數(shù)列{ank}叫做數(shù)列{an}的k方數(shù)列(其中an>0,k,n是正整數(shù)),S(k,n)表示k方數(shù)列的前n項(xiàng)的和.
(1)比較S(1,2)•S(3,2)與[S(2,2)]2的大小;
(2)若數(shù)列{an}的1方數(shù)列、2方數(shù)列都是等差數(shù)列,a1=a,求數(shù)列{an}的k方數(shù)列通項(xiàng)公式.
(3)對于常數(shù)數(shù)列an=1,具有關(guān)于S(k,n)的恒等式如:S(1,n)=S(2,n),S(2,n)=S(3,n)等等,請你對數(shù)列{an}的k方數(shù)列進(jìn)行研究,寫出一個(gè)不是常數(shù)數(shù)列{an}的k方數(shù)列關(guān)于S(k,n)的恒等式,并給出證明過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

我們把數(shù)列{ank}叫做數(shù)列{an}的k方數(shù)列(其中an>0,k,n是正整數(shù)),S(k,n)表示k方數(shù)列的前n項(xiàng)的和.
(1)比較S(1,2)•S(3,2)與[S(2,2)]2的大小;
(2)若數(shù)列{an}的1方數(shù)列、2方數(shù)列都是等差數(shù)列,a1=a,求數(shù)列{an}的k方數(shù)列通項(xiàng)公式.
(3)對于常數(shù)數(shù)列an=1,具有關(guān)于S(k,n)的恒等式如:S(1,n)=S(2,n),S(2,n)=S(3,n)等等,請你對數(shù)列{an}的k方數(shù)列進(jìn)行研究,寫出一個(gè)不是常數(shù)數(shù)列{an}的k方數(shù)列關(guān)于S(k,n)的恒等式,并給出證明過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省鹽城市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知數(shù)列{an}是以d為公差的等差數(shù)列,{bn}數(shù)列是以q為公比的等比數(shù)列.
(Ⅰ)若數(shù)列的前n項(xiàng)和為Sn,且a1=b1=d=2,S3<a1003+5b2-2010,求整數(shù)q的值;
(Ⅱ)在(Ⅰ)的條件下,試問數(shù)列中是否存在一項(xiàng)bk,使得bk恰好可以表示為該數(shù)列中連續(xù)p(p∈N,p≥2)項(xiàng)的和?請說明理由;
(Ⅲ)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的約數(shù)),求證:數(shù)列{bn}中每一項(xiàng)都是數(shù)列{an}中的項(xiàng).

查看答案和解析>>

同步練習(xí)冊答案