在雙曲線中,F(xiàn)1、F2分別為其左右焦點,點P在雙曲線上運動,求△PF1F2的重心G的軌跡方程.

 

【答案】

(y≠0)

【解析】

試題分析:在雙曲線中F1(-6,0),F(xiàn)2(6,0),設(shè)點P(m,n ),則  ①.

設(shè)△PF1F2的重心G(x,y),則由三角形的重心坐標公式可得

x=,y=,即 m=3x,n=3y,代入①化簡可得(y≠0)。

考點:本題主要考查雙曲線的標準方程,三角形重心坐標公式,軌跡方程求法。

點評:中檔題,“相關(guān)點法(代入法)”是一種重要的求軌跡方程的方法。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2010•福建模擬)已知中心的坐標原點,以坐標軸為對稱軸的雙曲線C過點Q(2,
3
3
)
,且點Q在x軸上的射影恰為該雙曲線的一個焦點F1
(Ⅰ)求雙曲線C的方程;
(Ⅱ)命題:“過橢圓
x2
25
+
y2
16
=1
的一個焦點F作與x軸不垂直的任意直線l”交橢圓于A、B兩點,線段AB的垂直平分線交x軸于點M,則
|AB|
|FM|
為定值,且定值是
10
3
”.命題中涉及了這么幾個要素:給定的圓錐曲線E,過該圓錐曲線焦點F的弦AB,AB的垂直平分線與焦點所在的對稱軸的交點M,AB的長度與F、M兩點間距離的比值.試類比上述命題,寫出一個關(guān)于拋物線C的類似的正確命題,并加以證明
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關(guān)于圓錐曲線(橢圓、雙曲線、拋物線)的統(tǒng)一的一般性命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)給出以下判斷:
(1)b=0是函數(shù)f(x)=ax2+bx+c為偶函數(shù)的充要條件;
(2)橢圓
x2
4
+
y2
3
=1
中,以點(1,1)為中點的弦所在直線方程為x+2y-3=0;
(3)回歸直線
y
=
b
x+
a
必過點(
.
x
,
.
y
)

(4)如圖,在四面體ABCD中,設(shè)E為△BCD的重心,則
AE
=
AB
+
1
2
AC
+
2
3
AD

(5)雙曲線
x2
a2
-
y2
b2
=1( a>0 , b>0 )
的兩焦點為F1,F(xiàn)2,P為右支是異于右頂點的任一點,△PF1F2的內(nèi)切圓圓心為T,則點T的橫坐標為a.其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源:2007屆宜昌市一中高三數(shù)學(理)期末考試模擬試題-舊人教 題型:044

F1、F2為雙曲線(a>0,b>0)的左、右焦點,O為坐標原點,P在雙曲線左支上,M在右準線上,且滿足,

(Ⅰ)求此雙曲線的離心率;

(Ⅱ)若此雙曲線過點N(2,),求雙曲線方程;

(Ⅲ)設(shè)(Ⅱ)中雙曲線的虛軸端點為B1,B2(B1y軸正半軸上),點A、B在雙曲線上,且,求時,直線AB的方程.

當x1>0,x2>0時,證明:f(x1)+f(x2)<f(x1+x2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)無論m為任何實數(shù),直線l:y=x+m與雙曲線C:=1(b>0)恒有公共點.

(1)求雙曲線C的離心率e的取值范圍;

(2)若直線l經(jīng)過雙曲線C的右焦點F與雙曲線C交于P、Q兩點,并且滿足=,求雙曲線C的方程.

(文)已知F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點,直線l:y=2x+5與橢圓C交于兩點P1、P2,已知橢圓C的中心O關(guān)于直線l的對稱點恰好落在橢圓C的左準線上.

(1)求橢圓C的左準線的方程;

(2)如果a2的等差中項,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年福建省普通高中畢業(yè)班質(zhì)量檢查數(shù)學試卷(理科)(解析版) 題型:解答題

已知中心的坐標原點,以坐標軸為對稱軸的雙曲線C過點,且點Q在x軸上的射影恰為該雙曲線的一個焦點F1
(Ⅰ)求雙曲線C的方程;
(Ⅱ)命題:“過橢圓的一個焦點F作與x軸不垂直的任意直線l”交橢圓于A、B兩點,線段AB的垂直平分線交x軸于點M,則為定值,且定值是”.命題中涉及了這么幾個要素:給定的圓錐曲線E,過該圓錐曲線焦點F的弦AB,AB的垂直平分線與焦點所在的對稱軸的交點M,AB的長度與F、M兩點間距離的比值.試類比上述命題,寫出一個關(guān)于拋物線C的類似的正確命題,并加以證明
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關(guān)于圓錐曲線(橢圓、雙曲線、拋物線)的統(tǒng)一的一般性命題(不必證明).

查看答案和解析>>

同步練習冊答案