精英家教網(wǎng)如圖所示,在四棱錐P-ABCD中,底面ABCD是矩形,PA=AB=2,BC=a,又側(cè)棱PA⊥底面ABCD.
(1)當(dāng)a為何值時(shí),BD⊥平面PAC?試證明你的結(jié)論.
(2)當(dāng)a=4時(shí),求D點(diǎn)到平面PBC的距離.
(3)當(dāng)a=4時(shí),求直線PD與平面PBC所成的角.
分析:(1)由兩組線線垂直即可判定線面垂直,而已有BD⊥PA,所以只需BD⊥AC則可判定BD⊥平面PAC,故a=2即可.
(2)先由平面PBC中的
PB
、
BC
確定它的一個(gè)法向量
n
,然后求出
DC
在法向量
n
上的投影長,即D點(diǎn)到平面PBC的距離.
(3)先由
DP
n
的夾角確定它們所在直線的夾角,則該角的余角即為直線PD與平面PBC所成的角.
解答:精英家教網(wǎng)解:以A為坐標(biāo)原點(diǎn),AD、AB、AP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,
(1)當(dāng)a=2時(shí),BD⊥AC,又PA⊥BD,所以BD⊥平面PAC.故a=2.
(2)當(dāng)a=4時(shí),D(4,0,0)、B(0,2,0)、C(4,2,0)、P(0,0,2),
PB
=(0,2,-2),
BC
=(4,0,0),
DC
=(0,2,0).
設(shè)平面PBC的法向量
n
=(x,y,z),則
n
PB
=0,
n
BC
=0,
即(x,y,z)•(0,2,-2)=0,(x,y,z)•(4,0,0)=0,
得x=0,y=z,不妨取y=1,故
n
=(0,1,1).
則D點(diǎn)到平面PBC的距離d=
|
n
DC
|
|
n|
=
2

(3)由(2)知,
DP
=(-4,0,2),
則cos<
DP
,
n
>=
DP
n
|
DP
| |
n
|
=
10
10
>0,
設(shè)<
DP
,
n
>=α,直線PD與平面PBC所成的角為θ,
則sinθ=sin(
π
2
-α)=cosα=
10
10

所以直線PD與平面PBC所成的角為arcsin
10
10
點(diǎn)評(píng):本題主要考查向量法解決立體幾何中的距離及夾角問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且垂直于底面ABCD,底面ABCD是邊長為2的菱形,∠BAD=60°,M為PC上一點(diǎn),且PA∥平面BDM.
(1)求證:M為PC中點(diǎn);
(2)求平面ABCD與平面PBC所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在四棱錐P-ABCD中,PC⊥平面ABCD,PC=2,在四邊形ABCD中,∠B=∠C=90°,AB=4,CD=1,點(diǎn)M在PB上,PB=4PM,PB與平面ABCD成30°的角.
(1)求證:CM∥平面PAD;
(2)點(diǎn)C到平面PAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東)如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E在線段PC上,PC⊥平面BDE.
(1)證明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是正方形,PD⊥平面ABCD,E為PC的中點(diǎn).
求證:
(1)PA∥平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,PA=AD=2AB=2,M為PD上的點(diǎn),若PD⊥平面MAB
(I)求證:M為PD的中點(diǎn);
(II)求二面角A-BM-C的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案