A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{3}$或$\frac{2π}{3}$ |
分析 已知等式左邊利用正弦定理化簡,整理后得到關(guān)系式,利用余弦定理表示出cosA,將得出關(guān)系式代入求出cosA的值,即可確定出∠A的度數(shù).
解答 解:由正弦定理$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$化簡已知等式得:$\frac{b-a}{b-c}$=$\frac{c}{a+b}$,
整理得:(b-a)(b+a)=c(b-c),即b2+c2-a2=bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∵∠A為△ABC的內(nèi)角,
∴∠A=$\frac{π}{3}$.
故選:B.
點(diǎn)評 此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦、余弦定理是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{π}{2}$ | B. | π | C. | $\frac{π}{3}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=0且b=0 | B. | b=0且r=|a| | C. | b=0且r=a | D. | b=0且r=-a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{4}$,2) | B. | (-$\frac{1}{8}$,0) | C. | (-$\frac{1}{8}$,$\frac{1}{24}$] | D. | (0,$\frac{1}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8204 | B. | 4102 | C. | 2048 | D. | 1024 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com