若函數(shù)在給定區(qū)間M上存在正數(shù)t,使得對于任意,有,且,則稱為M上的t級類增函數(shù)。給出4個命題
①函數(shù)上的3級類增函數(shù)
②函數(shù)上的1級類增函數(shù)
③若函數(shù)上的級類增函數(shù),則實數(shù)a的最小值為2
④設(shè)是定義在上的函數(shù),且滿足:1.對任意,恒有;2.對任意,恒有;3. 對任意,,若函數(shù)上的t級類增函數(shù),則實數(shù)t的取值范圍為。
以上命題中為真命題的是     
①④

試題分析:因為不成立,故A不正確;,∵f(x)=|log2(x-1)|,,∴f(x+1)-f(x)=|log2x|-|log2(x-1)|0在(1,+∞)上不成立,故B不正確;∵函數(shù)f(x)=sinx+ax為[ ,+∞)上的級類增函數(shù),
∴sin(x+)+a(x+)≥sinx+ax,∴sinxcos+cosxsin+ax+a≥sinx+ax,∴ cosx+a≥
sinx,當(dāng)x=時,a≥,a≥,∴實數(shù)a的最小值不為2,故C不正確;∵f(x)=x2-3x為[1,+∞)上的t級類增函數(shù),∴(x+t)2-3(x+t)≥x2-3x,∴2tx+t2-3t≥0, t≥3-2x∈[1,+∞),故D成立.故答案①④
點評:本題考查命題的真假判斷,是中檔題.解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的最小正周期;
(2)設(shè)函數(shù)對任意,有,且當(dāng)時,;求函數(shù)上的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)是定義在上的以為周期的偶函數(shù),若,則實數(shù)的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某單位用2160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層、每層2000平方米的樓房.經(jīng)測算,如果將樓房建為層,則每平方米的平均建筑費用為(單位:元).為了使樓房每平方米的平均綜合費用最少,該樓房應(yīng)建為多少層?
(注:平均綜合費用平均建筑費用平均購地費用,平均購地費用

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)如果函數(shù)上是單調(diào)減函數(shù),求的取值范圍;
(2)是否存在實數(shù),使得方程在區(qū)間內(nèi)有且只有兩個不相等的實數(shù)根?若存在,請求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則,有的大小關(guān)系為
A.B.
C.D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

將邊長為的一塊正方形鐵皮的四角各截去一個大小相同的小正方形,然后將四邊折起做成一個無蓋的方盒.欲使所得的方盒有最大容積,截去的小正方形的邊長應(yīng)為多少?方盒的最大容積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于實數(shù)a和b,定義運算“*”:,設(shè),且關(guān)于x的方程恰有三個互不相等的實數(shù)根,則實數(shù)的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f (x)的定義域為M,具有性質(zhì)P:對任意xM,都有f (x)+f (x+2)≤2f (x+1).
(1)若M為實數(shù)集R,是否存在函數(shù)f (x)=ax (a>0且a≠1,x∈R) 具有性質(zhì)P,并說明理由;
(2)若M為自然數(shù)集N,并滿足對任意xM,都有f (x)∈N. 記d(x)=f (x+1)-f (x).
(ⅰ) 求證:對任意xM,都有d(x+1)≤d(x)且d(x)≥0;
(ⅱ) 求證:存在整數(shù)0≤cd(1)及無窮多個正整數(shù)n,滿足d(n)=c.

查看答案和解析>>

同步練習(xí)冊答案