2.已知向量$\overrightarrow{a}$與向量$\overrightarrow$的夾角為θ,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$.
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求$\overrightarrow{a}$•$\overrightarrow$;
(2)若$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$垂直,求θ.

分析 (1)利用兩個(gè)向量平行的性質(zhì),兩個(gè)向量的數(shù)量積的定義,求得$\overrightarrow{a}•\overrightarrow$的值.
(2)利用兩個(gè)向量垂直的性質(zhì),兩個(gè)向量的數(shù)量積的定義,求得cosθ的值,可得θ的值.

解答 解:(1)∵向量$\overrightarrow{a}$與向量$\overrightarrow$的夾角為θ,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,若$\overrightarrow{a}$∥$\overrightarrow$,則θ=0°或180°,所以$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|cos θ=±$\sqrt{2}$.
(2)若$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$垂直,則($\overrightarrow{a}-\overrightarrow$)•$\overrightarrow{a}$=0,即|$\overrightarrow{a}$|2-$\overrightarrow{a}•\overrightarrow$=1-$\sqrt{2}$cos θ=0,∴cos θ=$\frac{\sqrt{2}}{2}$.
又0°≤θ≤180°,∴θ=45°.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量平行、垂直的性質(zhì),兩個(gè)向量的數(shù)量積的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在極坐標(biāo)系中,已知圓C的圓心C(3,$\frac{π}{9}$),半徑為1.Q點(diǎn)在圓周上運(yùn)動(dòng),O為極點(diǎn).
(1)求圓C的極坐標(biāo)方程;
(2)若P在直線OQ上運(yùn)動(dòng),且滿足$\frac{OQ}{QP}$=$\frac{2}{3}$,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)y=f″(x)是y=f′(x)的導(dǎo)數(shù).某同學(xué)經(jīng)過探究發(fā)現(xiàn),任意一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有對(duì)稱中心(x0,f(x0)),其中x0滿足f″(x0)=0.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,則f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+f($\frac{3}{2017}$)+…+f($\frac{2016}{2017}$)=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)是定義在R上且周期為2的奇函數(shù),當(dāng)0<x<1時(shí),f(x)=4x-1,則f(0)=0,f($\frac{5}{2}$)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.甲、乙兩位同學(xué)期末考試的語文、數(shù)學(xué)、英語、物理成績(jī)?nèi)缜o葉圖所示,其中甲的一個(gè)數(shù)據(jù)記錄模糊,無法辨認(rèn),用a來表示,已知兩位同學(xué)期末考試四科的總分恰好相同,則甲同學(xué)四科成績(jī)的中位數(shù)為(  )
A.92B.92.5C.93D.93.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在{an}中,${a_1}=2,\frac{a_1}{1}+\frac{a_2}{2}+…+\frac{a_n}{n}=\frac{n}{{2({n+1})}}{a_{n+1}}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若${b_n}=\frac{1}{{{a_{n+1}}-2}}$,數(shù)列{bn}的前n項(xiàng)和為Sn,證明:${S_n}<\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在正方體ABCD-A1B1C1D1中,異面直線B1D1與AC所成角大小是90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列四個(gè)判斷:
①某校高三一班和高三二班的人數(shù)分別是m,n,某次測(cè)試數(shù)學(xué)平均分分別是a,b,則這兩個(gè)班的數(shù)學(xué)平均分為$\frac{a+b}{2}$;
②10名工人某天生產(chǎn)同一零件的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有c>a>b;
③從總體中抽取的樣本為$({x_1},y{_1}),(x{_2},{y_2}),…,({x_n},{y_n}),若記\overline x=\frac{1}{n}\sum_{i=1}^n{{x_i},\overline y=\frac{1}{n}}\sum_{i=1}^n{\;}{y_i}$,則回歸直線$\widehaty=\widehatbx+\widehata$必過點(diǎn)($\overline x,\overline y$)
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=4,則P(ξ>2)=0.2
其中正確的個(gè)數(shù)有(  )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)兩向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$滿足$|\overrightarrow{e_1}|=2$,$|\overrightarrow{e_2}|=1$,$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夾角為60°,$\vec a=2$$\overrightarrow{e_1}$+$\overrightarrow{e_2}$$\vec b=\overrightarrow{e_1}+2\overrightarrow{e_2}$,則$\vec a$在$\vec b$上的投影為( 。
A.$\frac{{5\sqrt{3}}}{2}$B.$\frac{{5\sqrt{21}}}{7}$C.$\frac{{5\sqrt{7}}}{7}$D.$\frac{{5\sqrt{2}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案