若函數(shù)f(x)是奇函數(shù),當(dāng)x>0,,求當(dāng)x<0時,f(x)的解析式.

答案:略
解析:

解:當(dāng)x0時,-x0,∴

又∵f(x)是奇數(shù),∴f(x)=f(x).∴

即當(dāng)x0時的解析是


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函數(shù),定義域為區(qū)間D(使表達(dá)式有意義的實數(shù)x 的集合).
(1)求實數(shù)m的值,并寫出區(qū)間D;
(2)若底數(shù)a>1,試判斷函數(shù)y=f(x)在定義域D內(nèi)的單調(diào)性,并說明理由;
(3)當(dāng)x∈A=[a,b)(A⊆D,a是底數(shù))時,函數(shù)值組成的集合為[1,+∞),求實數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函數(shù),定義域為區(qū)間D(使表達(dá)式有意義的實數(shù)x 的集合).
(1)求實數(shù)m的值,并寫出區(qū)間D;
(2)若底數(shù)a滿足0<a<1,試判斷函數(shù)y=f(x)在定義域D內(nèi)的單調(diào)性,并說明理由;
(3)當(dāng)x∈A=[a,b)(A⊆D,a是底數(shù))時,函數(shù)值組成的集合為[1,+∞),求實數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時,f(x)>0.
(1)求證:函f(x)是奇函數(shù);
(2)求證:函數(shù)f(x)是R上的減函數(shù);
(3)若定義在(-2,2)上的函數(shù)f(x)滿足f(-m)+f(1-m)<0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•遂寧二模)設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù),使得對于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù),現(xiàn)給出下列命題:
①函數(shù)f(x)=(
12
)x
為R上的1高調(diào)函數(shù);
②函數(shù)f (x)=sin 2x為R上的高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);
④如果定義域為R的函教f (x)是奇函數(shù),當(dāng)x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實數(shù)a的取值范圍是[一1,1].
其中正確的命題是
②③④
②③④
 (寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黃浦區(qū)二模 題型:解答題

已知函數(shù)f(x)=loga
2m-1-mx
x+1
(a>0,a≠1)
是奇函數(shù),定義域為區(qū)間D(使表達(dá)式有意義的實數(shù)x 的集合).
(1)求實數(shù)m的值,并寫出區(qū)間D;
(2)若底數(shù)a滿足0<a<1,試判斷函數(shù)y=f(x)在定義域D內(nèi)的單調(diào)性,并說明理由;
(3)當(dāng)x∈A=[a,b)(A⊆D,a是底數(shù))時,函數(shù)值組成的集合為[1,+∞),求實數(shù)a、b的值.

查看答案和解析>>

同步練習(xí)冊答案