19.若x,y滿足約束條件$\left\{\begin{array}{l}x+y≥0\\ x-y≥-1\\ 2x-y≤2\end{array}\right.$,則目標(biāo)函數(shù)z=x-2y的最小值是(  )
A.-5B.$-\frac{3}{2}$C.0D.2

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進行求最值即可.

解答 解:由z=x-2y得y=$\frac{1}{2}x-\frac{z}{2}$,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分ABC):
平移直線y=$\frac{1}{2}x-\frac{z}{2}$,
由圖象可知當(dāng)直線y=$\frac{1}{2}x-\frac{z}{2}$,過點A時,直線y=$\frac{1}{2}x-\frac{z}{2}$的截距最大,此時z最小,
由$\left\{\begin{array}{l}{x-y=-1}\\{2x-y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$,即A(3,4).
代入目標(biāo)函數(shù)z=x-2y,
得z=3-8=-5,
∴目標(biāo)函數(shù)z=x-2y的最小值是-5.
故選:A.

點評 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+ax,x≤0}\\{ln(x+1),x>0}\end{array}\right.$,若對x∈R有|f(x)|≥-2x-4恒成立,則a的取值范圍是( 。
A.(-∞,0]∪[2,+∞)B.(-∞,-2]∪[0,+∞)C.[-2,+∞)D.[-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.點P從點O出發(fā),按逆時針方向沿周長為l的圖形運動一周,O,P兩點連線的距離y與點P走過的路程x的函數(shù)關(guān)系如圖,那么點P所走的圖形是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某高級中學(xué)共有學(xué)生3200人,其中高二級與高三級各有學(xué)生1000人,現(xiàn)采用分層抽樣的方法,抽取容量為160的樣本,則應(yīng)抽取的高一級學(xué)生人數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和為Sn,滿足a1=$\frac{1}{3},{S_{n+1}}={S_n}+4{a_n}$+3.
(Ⅰ)證明:{an+1}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=x2-x-$\frac{4x}{x-1}$(x<0),g(x)=x2+bx-2(x>0),b∈R,若f(x)圖象上存在A,B兩個不同的點與g(x)圖象上A′,B′兩點關(guān)于y軸對稱,則b的取值范圍為( 。
A.(-4$\sqrt{2}$-5,+∞)B.(4$\sqrt{2}$-5,+∞)C.(-4$\sqrt{2}$-5,1)D.(4$\sqrt{2}$-5,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,角A,B,C的對邊分別是a,b,c,若$\frac{a}{sinB}+\frac{sinA}$=2c,則∠C的大小是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:若方程x2+y2+2mx-2y+2m=0表示圓,則實數(shù)m≠1;
命題q:若以原點為對稱中心,坐標(biāo)軸為對稱軸的雙曲線的一條漸近線與直線2x-y+1=0平行,則雙曲線的離心率等于$\sqrt{5}$,下列命題真確的是( 。
A.p∧qB.¬p∨qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在等差數(shù)列{an}中,a1+a4+a7=27,a3+a6+a9=9,則a9=-6.

查看答案和解析>>

同步練習(xí)冊答案