11.在△ABC中,角A,B,C的對邊分別是a,b,c,若$\frac{a}{sinB}+\frac{sinA}$=2c,則∠C的大小是$\frac{π}{2}$.

分析 由正弦定理可得基本不等式可得sinC的范圍,再由sinC的值域可得sinC的值為1,在三角形中可得.

解答 解:∵在△ABC中,$\frac{a}{sinB}+\frac{sinA}$=2c,
∴由正弦定理和基本不等式可得:
2sinC=$\frac{sinA}{sinB}$+$\frac{sinB}{sinA}$≥2,
當且僅當$\frac{sinA}{sinB}$=$\frac{sinB}{sinA}$即sinA=sinB時取等號,
∴sinC≥1,由又sinC≤1,故sinC=1,
∴在三角形中∠C=$\frac{π}{2}$,
故答案為:$\frac{π}{2}$.

點評 本題考查正弦定理解三角形,涉及基本不等式求最值,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.設Sn為數(shù)列{an}的前n項和,且Sn=n2,數(shù)列{bn}為等比數(shù)列.已知a1b1+a2b2+a3b3+…+anbn=(n-1)•3n+1+3.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設(an+1)•log3bn+2•cn=1,求證:數(shù)列{cn}的前n項和Tn<$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知復數(shù)z=2i(1-i)(i為虛數(shù)單位),z的共軛復數(shù)為$\overline{z}$,則$z+\overline{z}$=( 。
A.4iB.-4iC.4D.-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若x,y滿足約束條件$\left\{\begin{array}{l}x+y≥0\\ x-y≥-1\\ 2x-y≤2\end{array}\right.$,則目標函數(shù)z=x-2y的最小值是( 。
A.-5B.$-\frac{3}{2}$C.0D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)f(x)是定義在R上的奇函數(shù),且f(x-1)為偶函數(shù),當x∈[0,1]時,f(x)=x${\;}^{\frac{1}{2}}$,若g(x)=f(x)-2x-b有三個零點,則實數(shù)b的取值范圍是( 。
A.(k-$\frac{1}{8}$,k+$\frac{1}{8}$),k∈ZB.(2k-$\frac{1}{8}$,2k+$\frac{1}{8}$),k∈ZC.(4k-$\frac{1}{8}$,4k+$\frac{1}{8}$),k∈ZD.(8k-$\frac{1}{8}$,8k+$\frac{1}{8}$),k∈Z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2$\sqrt{5}$,拋物線y=$\frac{1}{4}$x2+$\frac{1}{4}$與雙曲線C的漸近線相切,則雙曲線C的方程為(  )
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1C.x2-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-y2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{{e}^{x}}{|x|}$,關于x的方程f2(x)-2af(x)+a-1=0(m∈R)有四個相異的實數(shù)根,則a的取值范圍是($\frac{{e}^{2}-1}{2e-1}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知f(α)=$\frac{tan(π-α)sin(-2π-α)cos(6π-α)}{sin(α+\frac{3}{2}π)cos(α-\frac{1}{2}π)}$
(1)化簡f(α);
(2)若sinα=-$\frac{2}{3}$,α∈[一π,-$\frac{π}{2}$],求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知f(x)=$\sqrt{(a+2){x}^{2}+bx+a+2}$(a,b∈R)定義域為R,則3a+b的取值范圍為[-6,+∞).

查看答案和解析>>

同步練習冊答案