12.已知矩形ABCD的周長為18,把它沿圖中的虛線折成正四棱柱,則這個正四棱柱的外接球表面積的最小值為36π.

分析 正四棱柱的底面邊長為x,高為y,則4x+y=18,0<x<4.5,求出正四棱柱的外接球的半徑的最小值,即可求出外接球的表面積的最小值.

解答 解:設(shè)正四棱柱的底面邊長為x,高為y,則4x+y=18,0<x<4.5,
正四棱柱的外接球半徑為$\frac{1}{2}\sqrt{{x}^{2}+{x}^{2}+{y}^{2}}$=$\frac{1}{2}\sqrt{18(x-4)^{2}+36}$,
當且僅當x=4時,半徑的最小值=3,
∴外接球的表面積的最小值為4π×9=36π.
故答案為36π.

點評 本題考查外接球的表面積,考查配方法的運用,確定正四棱柱的外接球的半徑的最小值是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,設(shè)F(-c,0)是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦點,點P(-$\frac{{a}^{2}}{c}$,0)是x軸上的一點,點M,N為橢圓的左、右頂點,已知|MN|=8,且|PM|=2|MF|
(1)求橢圓的標準方程;
(2)過點P作直線l交橢圓于A,B兩點,試判定直線AF,BF的斜率之和kAF+kBF是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.橢圓6x2+y2=36的長軸端點坐標為(  )
A.(-1,0),(1,0)B.(0,-6),(0,6)C.(-6,0),(6,0)D.$(-\sqrt{6},0),(\sqrt{6},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,已知b=3,c=3$\sqrt{3}$,A=30°,則邊a等于( 。
A.9B.3C.27D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=a2-cos x,則f′(x)等于( 。
A.sin xB.cos xC.2a+sin xD.2a-sin x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,AB=3,BC=4,D是BC的中點,且$∠B=\frac{π}{3}$,則sin∠ADC=( 。
A.$\frac{{\sqrt{7}}}{4}$B.$\frac{{3\sqrt{21}}}{14}$C.$\frac{{\sqrt{39}}}{26}$D.$\frac{{\sqrt{7}}}{28}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和為Sn=3n2+8n,數(shù)列{bn}是等差數(shù)列,且an=bn+bn+1
(1)求數(shù)列{an},{bn}的通項公式an,bn
(2)設(shè)cn=$\frac{{{{({a_n}+1)}^{n+1}}}}{{{{({b_n}+2)}^n}}}$,且λ>$\frac{{{c_{n+1}}}}{c_n}$對任意的n∈N*恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在數(shù)列{an}中,a1=2,an+1=an+lg(1+$\frac{1}{n}$),則an的值為( 。
A.2+lgnB.2+(n-1)lgnC.2+nlgnD.1+nlgn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.寫出下列不等式的解集
(1)tanx-1≤0.
(2)-1≤tanx<$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案